최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기공업화학 = Applied chemistry for engineering, v.33 no.4, 2022년, pp.335 - 342
홍기훈 (고등기술연구원 플랜트공정개발센터) , 엄성현 (고등기술연구원 플랜트공정개발센터) , 황상연 (고등기술연구원 플랜트공정개발센터)
In the agricultural sector where the fossil fuels are primary energy resources, the current global energy crisis together with the dissemination of smart farming has led to the new phase of energy pattern in which the electricity demand is growing faster particularly. Therefore, the fuel cell combin...
Ministry of Foreign Affairs, Climate Change, https://www.mofa.go.kr/eng/wpge/m_5655/contents.do (2022.06.16.)
D. G. Hong, National Greenhouse Gas Inventory Report of Korea 2019, Ministry of Environment, Greenhouse Gas Inventory and Research Center, 4-11 (2020).
J. G. Kim, Korea Electric Power Corporation, Statistics of Electric Power in Korea 2020, No. 90, 26-27 (2021).
W.-H. Chen, J. Peng, and X.T. BI, A state-of-art review of biomass torrefaction, densification and applications, Renew. Sust. Energ. Rev., 44, 847-866 (2015).
R.O. Gadsboll, J. Thomsen, C. Bang-Moller, and J. Ahrenfeldt, Solid oxide fuel cells powered by biomass gasification for high efficiency power generation, Energy, 131, 198-206 (2017).
Z. Wu, P. Zhu, J. Yao, S. Zhang, J. Ren, F. Yang, and Z. Zhang, Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations, Appl. Energy, 279, 115794 (2020).
A. Arsalis, M. P. Nielsen, and S. K. Kaer, Application of an improved operational strategy on a PBI fuel cell-based residential system for Danish single-family households, Appl. Therm. Eng., 50, 704-713 (2013).
R. J. Braun, S. A. Klein, and D. T. Reindl, Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications, J. Power Sources, 158, 1290-1305 (2006).
V. Liso, Y. Zhao, N. Brandon, M. P. Nielsen, and S. K. Kaer, Analysis of the impact of heat-to-power ratio for a SOFC-based mCHP system for residential application under different climate regions in Europe, Int. J. Hydrog. Energy, 36, 13715-13726 (2011).
A. R. Korsgaard, M. P. Nielsen, and S. K. Kaer, Part one: A novel model of HTPEM-based micro-combined heat and power fuel cell system, Int. J. Hydrog. Energy, 33, 1909-1920 (2008).
I. Verhaert, G. Mulder, and M. D. Paepe, Evaluation of an alkaline fuel cell system as a micro-CHP, Energy Convers. Manag., 126, 434-445 (2016).
E. Jannelli, M. Minutillo, and A. Perna, Analyzing micro-cogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances, Appl. Energy, 108, 82-91 (2013).
A. R. Korsgaard, M. P. Nielsen, and S. K. Kaer, Part two: Control of a novel HTPEM-based micro combined heat and power fuel cell system, Int. J. Hydrog. Energy, 33, 1921-1931 (2008).
A. Arsalis and M. P. S. K. Kaer, Modeling and off-design performance of a 1 kWe HT-PEMFC (high temperature-proton exchange membrane fuel cell)-based residential micro-CHP (combined-heatand-power) system for Danish single-family households, Energy, 36, 993-1002 (2011).
A. Adam, E. S. Fraga, and D. J. L. Brett, Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration, Appl. Energy, 138, 685-694 (2015).
J. Kupecki, Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME, Int. J. Hydrog. Energy, 40, 12009- 12022 (2015).
P. Kazempoor, V. Dorer, and F. Ommi, Modelling and performance evaluation of solid oxide fuel cell for building integrated Coand polygeneration, Fuel Cells, 10, 1074-1094 (2010).
A. Arsalis, A comprehensive review of fuel cell-based micro-combined-heat-and-power systems, Renew. Sust. Energ. Rev., 105, 391-414 (2019).
P. J. Van Soest, Symposium on nutrition and forage and pastures: New chemical procedures for evaluating forages, J. Anim. Sci., 23, 838-845 (1964).
D. Mohan, C. U. Pittman Jr., and P. H. Steele, Pyrolysis of wood/biomass for Bio-oil: A critical review, Energy Fuels, 20, 848-889 (2006).
M. Sami, K. Annamalai, and M. Wooldridge, Co-firing of coal and biomass fuel blends, Prog. Energy Combust. Sci., 27, 171-214 (2001).
W.-H. Chen and P.-C. Kuo, Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass, Energy, 36, 803-811 (2011).
A. Ohliger, M. Forster, and R. Kneer, Torrefaction of beechwood: A parametric study including heat of reaction and grindability, Fuel, 104, 607-613 (2013).
M. Phanphanich and S. Mani, Impact of torrefaction on the grindability and fuel characteristics of forest biomass, Bioresour. Technol., 102, 1246-1253 (2011).
J. Wannapeera, B. Fungtammasan, and N. Worasuwannarak, Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass, J. Anal. Appl. Pyrolysis, 92, 99-105 (2011).
B. Arias, C. Pevida, J. Fermoso, M. G. Plaza, F. Rubiera, and J. J. Pis, Influence of torrefaction on the grindability and reactivity of woody biomass, Fuel Process. Technol., 89, 169-175 (2008).
Z. Yao, S. You, T. Ge, and C-H. Wang, Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation, Appl. Energy, 209, 43-55 (2018).
J. A. Ruiz, M. C. Juarez, M. P. Morales, P. Munoz, and M. A. Mendivil, Biomass gasification for electricity generation: Review of current technology barriers, Renew. Sust. Energ. Rev., 18, 174-183 (2013).
R. Warnecke, Gasification of biomass: comparison of fixed bed and fluidized bed gasifier, Biomass Bioenergy, 18, 489-497 (2000).
R. Thomson, P. Kwong, E. Ahmad, and K. D. P. Nigam, Clean syngas from small commercial biomass gasifiers; a review of gasifier development, recent advances and performance evaluation, Int. J. Hydrog. Energy, 45, 21087-21111 (2020).
F. Pinto and R. N. Andre, The role of gasification in achieving almost zero emissions in energy production from coal. In: R. Kumar (ed.). Fossil Fuels: Sources, Environmental Concerns and Waste Management Practices, 145-198, Nova Science Publishers, NY, USA (2013).
N.-H. An, S.-M. Lee, J.-R. Cho, and C.-R. Lee, Estimation of agricultural by-products and investigation on nutrient contents for alternatives of inported oil-cakes, J. Korea Org. Resour. Recycl. Assoc., 27, 71-81 (2019).
A. Paethanom, S. Nakahara, M. Kobayashi, and P. Prawisudha, Performance of tar removal by absorption and adsorption for biomass gasification, Fuel Process. Technol., 104, 144-154 (2012).
G. Akay, C. A. Jordan, and A. H. Mohamed, Syngas cleaning with nano-structured micro-porous ion exchange polymers in biomass gasification using a novel downdraft gasifier, J. Energy Chem., 22, 426-435 (2013).
M. Asafullah, Biomass gasification gas cleaning for downstream applications: A comparative critical review, Renew. Sust. Energ. Rev., 40, 118-132 (2014).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.