$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

건식 공정을 통한 리튬이차전지의 재활용 연구 동향
Overview on Pyrometallurgical Recycling Process of Spent Lithium-ion Battery 원문보기

Resources recycling = 자원리싸이클링, v.31 no.3, 2022년, pp.27 - 39  

박은미 (한국생산기술연구원 뿌리산업기술연구소) ,  한철웅 (한국생산기술연구원 뿌리산업기술연구소) ,  손성호 (한국생산기술연구원 뿌리산업기술연구소) ,  이만승 (목포대학교 신소재공학과) ,  김용환 (한국생산기술연구원 뿌리산업기술연구소)

초록
AI-Helper 아이콘AI-Helper

리튬이차전지의 수요는 1990년대 이후로 휴대용 전자 기기 시장과 함께 지속적으로 증가되어 왔으며, 최근 전기 자동차 시장의 급격한 확장에 따라 리튬이차전지 또한 전 세계적으로 수요가 급증하였다. 이는 가까운 미래에 천연자원으로부터의 리튬 공급량을 앞설 것이며, 리튬 자원 수급의 불안정을 초래할 수 있다. 지속적으로 축적되는 수명이 다 한 폐전지 또한 환경적으로 큰 문제를 야기할 수 있다. 이러한 문제를 해결하기 위해, 사용된 리튬이차전지의 재활용은 매우 중요한 기술적 과제이다. 본 연구에서는 건식 공정을 이용한 리튬이차전지의 재활용 공정과 함께 리튬 회수를 위한 추가 공정에 대해 조사하였다. 전지 재활용을 위한 건식 제련의 지속적인 연구는 리튬 및 유가 금속의 회수율을 크게 향상시켜 전기 자동차 및 휴대용 전자기기의 필수 부품인 리튬이차전지의 시장 안정화에 크게 기여할 것이다.

Abstract AI-Helper 아이콘AI-Helper

The global demand for lithium-ion batteries (LIBs) has been continuously increasing since the 1990s along with the growth of the portable electronic device market. Of late, the rapid growth of the electric vehicle market has further accelerated the demand for LIBs. The demand for the LIBs is expecte...

주제어

참고문헌 (60)

  1. Xie, J. and Y.-C. Lu, 2020 : A retrospective on lithium-ion batteries, Nature Communications, 11(1), pp.2499. 

  2. Dunn, J.B., L. Gaines, J. Sullivan, et al., 2012 : Impact of Recycling on Cradle-to-Gate Energy Consumption and Greenhouse Gas Emissions of Automotive Lithium-Ion Batteries, Environmental Science & Technology, 46(22), pp.12704-12710. 

  3. Bernardes, A.M., D.C.R. Espinosa, and J.A.S. Tenorio, 2004 : Recycling of batteries: a review of current processes and technologies, Journal of Power Sources, 130(1), pp. 291-298. 

  4. Choubey, P.K., K.-S. Chung, M.-s. Kim, et al., 2017 : Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs), Minerals Engineering, 110, pp.104-121. 

  5. Swain, B., 2016 : Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review, Journal of Chemical Technology & Biotechnology, 91(10), pp.2549-2562. 

  6. Sohn, J.-S. and C.-K. Lee, 2003 : Technology Developments for Recycling of Lithium Battery Wastes, Resources Recycling, 12(1), pp.65-74. 

  7. Dorella, G. and M.B. Mansur, 2007 : A study of the separation of cobalt from spent Li-ion battery residues, Journal of Power Sources, 170(1), pp.210-215. 

  8. Chen, M., X. Ma, B. Chen, et al., 2019 : Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries, Joule, 3(11), pp.2622-2646. 

  9. Costa, C.M., J.C. Barbosa, R. Goncalves, et al., 2021 : Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities, Energy Storage Materials, 37, pp.433-465. 

  10. Shi, J., C. Peng, M. Chen, et al., 2019 : Sulfation Roasting Mechanism for Spent Lithium-Ion Battery Metal Oxides Under SO 2 -O 2 -Ar Atmosphere, JOM, 71(12), pp.4473-4482. 

  11. Liu, P., L. Xiao, Y. Tang, et al., 2019 : Study on the reduction roasting of spent LiNi x Co y Mn z O 2 lithium-ion battery cathode materials, Journal of Thermal Analysis and Calorimetry, 136(3), pp.1323-1332. 

  12. Winslow, K.M., S.J. Laux, and T.G. Townsend, 2018 : A review on the growing concern and potential management strategies of waste lithium-ion batteries, Resources, Conservation and Recycling, 129, pp.263-277. 

  13. Zheng, X., Z. Zhu, X. Lin, et al., 2018 : A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries, Engineering, 4(3), pp.361-370. 

  14. Makuza, B., Q. Tian, X. Guo, et al., 2021 : Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review, Journal of Power Sources, 491, pp.229622. 

  15. Han, C.W., S.H. Son, M.-S. Lee, et al., 2019 : Study on the Pyro-metallurgical Process for Recovery of Valuable Metal in the Sludge Originated from PCB Manufacturing Process, Resources Recycling, 28(6), pp.87-95. 

  16. Friedrich, B. and L. Schwich, 2021 : New Science Based Concepts for Increased Efficiency in Battery Recycling, Metals, 11(4), pp.533. 

  17. Arya, A. and A.L. Sharma, 2017 : Polymer electrolytes for lithium ion batteries: a critical study, Ionics, 23(3), pp. 497-540. 

  18. Reddy, M.V., A. Mauger, C.M. Julien, et al., 2020 : Brief History of Early Lithium-Battery Development, Materials, 13(8), pp.1884. 

  19. Yun, L., D. Linh, L. Shui, et al., 2018 : Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles, Resources, Conservation and Recycling, 136, pp.198-208. 

  20. Lv, W., Z. Wang, H. Cao, et al., 2018 : A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries, ACS Sustainable Chemistry & Engineering, 6(2), pp.1504-1521. 

  21. Mohanty, A., S. Sahu, L.B. Sukla, et al., 2021 : Application of various processes to recycle lithium-ion batteries (LIBs): A brief review, Materials Today: Proceedings. 

  22. Assefi, M., S. Maroufi, Y. Yamauchi, et al., 2020 : Pyrometallurgical recycling of Li-ion, Ni-Cd and Ni-MH batteries: A minireview, Current Opinion in Green and Sustainable Chemistry, 24, pp.26-31. 

  23. Hu, J., J. Zhang, H. Li, et al., 2017 : A promising approach for the recovery of high value-added metals from spent lithium-ion batteries, Journal of Power Sources, 351, pp.192-199. 

  24. Li, J., P. Shi, Z. Wang, et al., 2009 : A combined recovery process of metals in spent lithium-ion batteries, Chemosphere, 77(8), pp.1132-1136. 

  25. Shin, S.M., N.H. Kim, J.S. Sohn, et al., 2005 : Development of a metal recovery p rocess from Li-ion b attery wastes, Hydrometallurgy, 79(3), pp.172-181. 

  26. Lain, M.J., 2001 : Recycling of lithium ion cells and batteries, Journal of Power Sources, 97-98, pp.736-738. 

  27. Lee, C.K. and K.-I. Rhee, 2002 : Preparation of LiCoO 2 from spent lithium-ion batteries, Journal of Power Sources, 109(1), pp.17-21. 

  28. Lombardo, G., B. Ebin, M.R. St. J. Foreman, et al., 2020 : Incineration of EV Lithium-ion batteries as a pretreatment for recycling - Determination of the potential formation of hazardous by-products and effects on metal compounds, Journal of Hazardous Materials, 393, pp.122372. 

  29. Lombardo, G., B. Ebin, M.R. St. J. Foreman, et al., 2019 : Chemical Transformations in Li-Ion Battery Electrode Materials by Carbothermic Reduction, ACS Sustainable Chemistry & Engineering, 7(16), pp.13668-13679. 

  30. Uwadiale, G.G.O.O., 1992 : Magnetizing Reduction of Iron Ores, Mineral Processing and Extractive Metallurgy Review, 11(1-2), pp.1-19. 

  31. Mao, J., J. Li, and Z. Xu, 2018 : Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO 2 batteries, Journal of Cleaner Production, 205, pp.923-929. 

  32. Kang, Y., 2019 : Desiliconisation and Dephosphorisation Behaviours of Various Oxygen Sources in Hot Metal Pre-Treatment, Metals, 9(2), pp.251. 

  33. Jie, Y., S. Yang, Y. Li, et al., 2020 : Oxidizing Roasting Behavior and Leaching Performance for the Recovery of Spent LiFePO 4 Batteries, Minerals, 10(11), pp.949. 

  34. Georgi-Maschler, T., T., B. Friedrich, R. Weyhe, et al., 2012 : Development of a recycling process for Li-ion batteries, Journal of Power Sources, 207, pp.173-182. 

  35. Li, J., G. Wang, and Z. Xu, 2016 : Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO 2 /graphite lithium batteries, Journal of Hazardous Materials, 302, pp.97-104. 

  36. Meshram, P., B.D. Pandey, and T.R. Mankhand, 2015 : Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects, Waste Management, 45, pp.306-313. 

  37. Hu, X., E. Mousa, and G. Ye, 2021 : Recovery of Co, Ni, Mn, and Li from Li-ion batteries by smelting reduction - Part II: A pilot-scale demonstration, Journal of Power Sources, 483, pp.229089. 

  38. Tytgat, J., 2013 : The Recycling Efficiency of Li-ion EV batteries according to the European Commission Regulation, and the relation with the End-of-Life Vehicles Directive recycling rate, World Electric Vehicle Journal, 6(4), pp.1039-1047. 

  39. Wcislo, Z., A. Michaliszyn, and A. Baka, 2012 : Role of slag in the steel refining process in the ladle, Journal of achievements in materials and manufacturing engineering, 55(2), pp.390-395. 

  40. Ellingham, H.J., 1944 : Reducibility of oxides and sulphides in metallurgical processes, J. Soc. Chem. Ind, 63(5), pp.125-160. 

  41. Siafakas, D., T. Matsushita, A.E.W. Jarfors, et al., 2018 : Viscosity of SiO 2 -CaO-Al 2 O 3 Slag with Low Silica - Influence of CaO/Al 2 O 3 , SiO 2 /Al 2 O 3 Ratio, ISIJ International, 58(12), pp.2180-2185. 

  42. Avarmaa, K., L. Klemettinen, H. O'Brien, et al., 2021 : Solubility of Palladium in Alumina-Iron Silicate Melts, JOM, 73(6), pp.1871-1877. 

  43. Ren, G.-x., S.-w. Xiao, M.-q. Xie, et al., 2017 : Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO-SiO 2 -Al 2 O 3 slag system, Transactions of Nonferrous Metals Society of China, 27(2), pp.450-456. 

  44. Baojun, Z., H. Peter, and J. Eugene, 2013 : Effects of CaO, Al 2 O 3 and MgO on liquidus temperatures of copper smelting and converting slags under controlled oxygen partial pressures, Journal of Mining and Metallurgy, Section B: Metallurgy, 49(2). 

  45. Dang, H., N. Li, Z. Chang, et al., 2020 : Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery, Separation and Purification Technology, 233, pp.116025. 

  46. Guoxing, R., et al. Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO-SiO 2 -Al 2 O 3 Slag System. in Advances in Molten Slags, Fluxes, and Salts : Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. 2016. Cham : Springer International Publishing. 

  47. Barbosa, L.I., G. Valente, R.P. Orosco, et al., 2014 : Lithium extraction from β-spodumene through chlorination with chlorine gas, Minerals Engineering, 56, pp.29-34. 

  48. Jena, P.K. and E.A. Brocchi, 1997 : Metal Extraction Through Chlorine Metallurgy, Mineral Processing and Extractive Metallurgy Review, 16(4), pp.211-237. 

  49. Barbosa, L.I., J.A. Gonzalez, and M.d.C. Ruiz, 2015 : Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride, Thermochimica Acta, 605, pp.63-67. 

  50. Dang, H., B. Wang, Z. Chang, et al., 2018 : Recycled Lithium from Simulated Pyrometallurgical Slag by Chlorination Roasting, ACS Sustainable Chemistry & Engineering, 6(10), pp.13160-13167. 

  51. Yan, Q.-x., X.-h. Li, Z.-x. Wang, et al., 2012 : Extraction of lithium from lepidolite using chlorination roasting-water leaching process, Transactions of Nonferrous Metals Society of China, 22(7), pp.1753-1759. 

  52. Xiao, J., J. Li, and Z. Xu, 2017 : Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy, Journal of Hazardous Materials, 338, pp.124-131. 

  53. Xiao, J., J. Li, and Z. Xu, 2017 : Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy, Environmental Science & Technology, 51(20), pp.11960-11966. 

  54. Xiao, S., G. Ren, M. Xie, et al., 2017 : Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO-SiO 2 -Al 2 O 3 Slag System, Journal of Sustainable Metallurgy, 3(4), pp.703-710. 

  55. Maroufi, S., M. Assefi, R. Khayyam Nekouei, et al., 2020 : Recovery of lithium and cobalt from waste lithium-ion batteries through a selective isolation-suspension approach, Sustainable Materials and Technologies, 23, pp.e00139. 

  56. Wang, W., Y. Han, T. Zhang, et al., 2019 : Alkali Metal Salt Catalyzed Carbothermic Reduction for Sustainable Recovery of LiCoO 2 : Accurately Controlled Reduction and Efficient Water Leaching, ACS Sustainable Chemistry & Engineering, 7(19), pp.16729-16737. 

  57. Wang, W., Y. Zhang, X. Liu, et al., 2019 : A Simplified Process for Recovery of Li and Co from Spent LiCoO 2 Cathode Using Al Foil As the in Situ Reductant, ACS Sustainable Chemistry & Engineering, 7(14), pp.12222-12230. 

  58. Wang, D., X. Zhang, H. Chen, et al., 2018 : Separation of Li and Co from the active mass of spent Li-ion batteries by selective sulfating roasting with sodium bisulfate and water leaching, Minerals Engineering, 126, pp.28-35. 

  59. Peng, C., F. Liu, Z. Wang, et al., 2019 : Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li 2 CO 3 ) from spent Li-ion batteries in nitrate system, Journal of Power Sources, 415, pp.179-188. 

  60. Fan, E., L. Li, J. Lin, et al., 2019 : Low-Temperature Molten-Salt-Assisted Recovery of Valuable Metals from Spent Lithium-Ion Batteries, ACS Sustainable Chemistry & Engineering, 7(19), pp.16144-16150. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로