$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

과황산계 산화제에 따른 폐LiFePO4 양극재에서 리튬의 침출 효과와 선택적 회수에 대한 연구
A Study on the Leaching Effect and Selective Recovery of Lithium Element by Persulfate-based Oxidizing Agents from Waste LiFePO4 Cathode 원문보기

Resources recycling = 자원리싸이클링, v.31 no.4, 2022년, pp.40 - 48  

김희선 (고등기술연구원 신소재공정센터) ,  김대원 (고등기술연구원 신소재공정센터) ,  장대환 (고등기술연구원 신소재공정센터) ,  김보람 (고등기술연구원 신소재공정센터) ,  진연호 (고등기술연구원 신소재공정센터) ,  채병만 ((주)케이엠씨) ,  이상우 ((주)케이엠씨)

초록
AI-Helper 아이콘AI-Helper

폐LiFePO4 배터리의 양극재에는 리튬이 약 4% 함유되어 있으며, 함유된 원소의 재활용은 환경적인 문제뿐만 아니라 자원순환의 관점에서 중요하다. 폐LiFePO4 양극재 분말에 함유된 리튬을 선택적으로 침출하기 위하여 3종류의 과황산계 산화제 [과황산나트륨(Na2S2O8), 과황산칼륨(K2S2O8), 그리고 과황산암모늄((NH4)2S2O8)]를 사용하여 각 성분의 침출율 및 분말특성을 비교 분석하였다. 침출 시 광액농도를 변수로 두고 각 조건별로 3시간 동안 침출을 진행하였으며, 얻어진 침출용액은 ICP 성분분석을 시행하여 침출율을 계산하였다. 본 연구에서 사용된 모든 과황산계 산화제 종류에서 92% 이상의 리튬 침출율을 보였다. 특히 과황산암모늄의 산화제를 사용하여 침출하였을 경우, 50 g/L의 광액농도 및 1.1 몰 비의 산화제 농도에서 약 93.3%의 가장 높은 리튬의 침출율을 보였다.

Abstract AI-Helper 아이콘AI-Helper

In waste lithium iron phosphate (LFP) batteries, the cathode material contains approximately 4% lithium. Recycling the constituent elements of batteries is important for resource circulation and for mitigating the environmental pollution. Li contained in the waste LFP cathode powder was selectively ...

주제어

참고문헌 (40)

  1. Xie, J., Lu, Y.-C., 2020 : A retrospective on lithium-ion batteries, Nature Communications, 11(1), pp.2499. 

  2. Kim, H., 2022 : Electric vehicle battery recycling industry trends and implications, pp.4-38, 11th Edition, Institute for International Trade, South Korea 

  3. Zeng, X., Li, J., Liu, L., 2015 : Solving spent lithium-ion battery problems in China: Opportunities and challenges, Renewable and Sustainable Energy Reviews, 52, pp.1759-1767. 

  4. Natarajan, S., Aravindan, V., 2018 : Recycling strategies for spent Li-ion battery mixed cathodes, ACS Energy Letters, 3(9), pp.2101-2103. 

  5. Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., et al., 1997 : Effect of structure on the Fe 3+ /Fe 2+ redox couple in iron phosphates. Journal of the Electrochemical Society, 144(5), pp.1609. 

  6. Zeng, X., Li, M., Abd El-Hady, D., et al., 2019 : Commercialization of lithium battery technologies for electric vehicles, Advanced Energy Materials, 9(27), pp.1900161. 

  7. Jing, Q., Zhang, J., Liu, Y., et al., 2020 : Direct regeneration of spent LiFePO 4 cathode material by a green and efficient one-step hydrothermal method, ACS Sustainable Chemistry & Engineering, 8(48), pp.17622-17628. 

  8. Park, E., Han, C., Son, S. H., et al., 2022 : Overview on Pyrometallurgical Recycling Process of Spent Lithium-ion Battery, Resources Recycling, 31(3), pp.27-39. 

  9. Joo, S., Kim, D.-G., Byun, S.-Y., et al., 2021 : A Study on the Synthesis Behavior of Lithium Hydroxide by Type of Precipitant for Lithium Sulfate Recovered from Waste LIB, Resources Recycling, 30(1), pp.44-52. 

  10. Kim, D. W., Park, J. R., Ahn, N. K., et al., 2019 : A review on the recovery of the lithium carbonate powders from lithium containing substances, J. of the Korean Crystal Growth and Crystal Technology, 29(3), pp.91-106. 

  11. Yang, J. K., Jin, Y. H., Yang, D. H., et al., 2019 : A study on the reaction of carbonation in the preparation of lithium carbonate powders, J. of the Korean Crystal Growth and Crystal Technology, 29(5), pp.222-228. 

  12. Jin, Y. H., Kim, B. R., Kim, D. W., 2021 : Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water, Clean Technol., 27(1), pp.33-38. 

  13. Kim, B. R., Kim, D. W., Kim, T. H., et al., 2022 : A study on the synthesis of a cathode active material precursor from a waste lithium secondary battery, J. of the Korean Crystal Growth and Crystal Technology, 32(2), pp.61-67. 

  14. Jung, Y. J., Park, S. C., Kim, Y. H., et al., 2021 : A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batreries Cell Powder, Resources Recycling, 30(6), pp.45-52. 

  15. Yu, X., Yu, S., Yang, Z., et al., 2022 : Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes, Energy Storage Materials, 51, pp.54-62. 

  16. Moon, H. S., Song, S. J., Tran, T. T., et al., 2022 : Separation of Co(II), Ni(II), and Cu(II) from Sulfuric Acid Solution by Solvent Extraction, Resources Recycling, 31(1), pp.21-28. 

  17. Chen, J., Li, Q., Song, J., et al., 2016 : Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO 4 batteries, Green Chem., 18(8), pp.2500-2506. 

  18. Song, X., Hu, T., Liang, C., et al., 2017 : Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method, RSC Adv., 7(8), pp.4783-4790. 

  19. Li, X., Zhang, J., Song, D., et al., 2017 : Direct regeneration of recycled cathode material mixture from scrapped LiFePO 4 batteries, J. Power Sources, 345, pp.78-84. 

  20. Zhang, X., Xue, Q., Li, L., et al., 2016 : Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries, ACS Sustainable Chem. Eng., 4(12), pp.7041-7049. 

  21. Li, H., Xing, S., Liu, Y., et al., 2017 : Recovery of Lithium, Iron, and Phosphorus from Spent LiFePO 4 Batteries Using Stoichiometric Sulfuric Acid Leaching System, ACS Sustainable Chem. Eng., 5, pp.8017-8024. 

  22. Cai, G., Fung, K. Y., Ng, K. M., 2014 : Process Development for the Recycle of Spent Lithium Ion Batteries by Chemical Precipitation, Ind. Eng. Chem. Res., 53(47), pp.18245-18259. 

  23. Mahandra, H., Ghahreman, A., 2021 : A sustainable process for selective recovery of lithium as lithium phosphate from spent LiFePO 4 batteries, Resources, Conservation & Recycling, 175, pp.105883. 

  24. Kumar, J., Shen, X., Li, B., et al., 2020 : Selective recovery of Li and FePO 4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4, Waste Management, 113, pp.32-40. 

  25. Yang, Y., Meng, X., Cao, H., et al., 2018 : Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process, Green Chem, 20(13), pp.3121-3133. 

  26. Zhang, J., Hu, J., Liu, Y., et al., 2019 : Sustainable and Facile Method for the Selective Recovery of Lithium from Cathode Scrap of Spent LiFePO 4 Batteries, ACS Sustain. Chem. Eng., 7(6), pp.5626-5631. 

  27. Bian, D., Sun, Y., Li, S., et al., 2016 : A novel process to recycle spent LiFePO 4 for synthesizing LiFePO 4 /C hierarchical microflowers, Electrochimica Acta, 190, pp.134-140. 

  28. Huang, Y., Han, G., Liu, J., et al., 2016 : A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process, Journal of Power Sources, 325, pp.555-564. 

  29. Kumar, J., Shen, X., Li, B., et al., 2020 : Selective recovery of Li and FePO 4 from spent LiFePO 4 cathode scraps by organic acids and the properties of the regenerated LiFePO 4 , Waste Management, 113, pp.32-40. 

  30. Li, L., Bian, Y., Zhang, X., et al., 2019 : A green and effective room-temperature recycling process of LiFePO 4 cathode materials for lithium-ion batteries, Waste Management, 85, pp.437-444. 

  31. Fan, E., Li, L., Zhang, X., et al., 2018 : Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach, ACS Sustainable Chemistry & Engineering, 6(8), pp.11029-11035. 

  32. Liu, K., Liu, L., Tan, Q., et al., 2021 : Selective extraction of lithium from a spent lithium iron phosphate battery by mechanochemical solid-phase oxidation, Green Chemistry, 23(3), pp.1344-1352. 

  33. Peng, D., Zhang, J., Zou, J., et al., 2021 : Closed-loop regeneration of LiFePO 4 from spent lithium-ion batteries: A "feed three birds with one scone" strategy toward advanced cathode materials, Journal of Cleaner Production, 316, pp.128098. 

  34. Tao, S., Li, J., Wang, L., et al., 2019 : A method for recovering Li 3 PO 4 from spent lithium iron phosphate cathode material through high-temerature activation, Ionics, 25, pp.5643-5653. 

  35. Ji, G., Ou, X., Zhao, R., et al., 2021 : Efficient utilization of scrapped LiFePO 4 battery for novel synthesis of Fe 2 P 2 O 7 /C as candidate anode materals, Resources, Conservation and Reccling, 174, pp.105802. 

  36. Janssen, Y., Santhanagopalan, D., Qian, D., et al., 2013 : Reciprocal Salt Flux Growth of LiFePO 4 Single Crystals with Controlled Defect Concentrations, Chem. Mater., 25, pp.4574. 

  37. Gangaja, B., Nair, S., Santhanagopalan, D., 2021 : Reuse, recycle, and regeneration of LiFePO 4 cathode from spent lithium-ion batteries for rechargeable lithium-and sodium-ion batteries, ACS Sustainable Chemistry & Engineering, 9(13), pp.4711-4721. 

  38. SIDS Initial Assessment Report For SIAM 20 Paris, 2005, pp.19-21, France 

  39. Balej, J., 2013 : Mean Activity Coefficients of Peroxodisulfates in Saturated Solutions of the Conversion System 2NH-2Na-SO-SO-HO at 20℃ and 30℃, Acta Chimica Slovaca, 6(2), pp.163-167. 

  40. Apelblat, A., Korin, E., Manzurola, E., 2001 : Solubilities and vapour pressures of saturated aqueous solutions of sodium peroxydisulfate and potassium peroxydisulfate, The Journal of Chemical Thermodynamics, 33(1), pp.61-69. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로