$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Shaking table test and numerical analysis of nuclear piping under low- and high-frequency earthquake motions 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.54 no.9, 2022년, pp.3361 - 3379  

Kwag, Shinyoung (Department of Civil and Environmental Engineering, Hanbat National University) ,  Eem, Seunghyun (School of Convergence & Fusion System Engineering, Major in Plant System Engineering, Kyungpook National University) ,  Kwak, Jinsung (Korea Atomic Energy Research Institute) ,  Lee, Hwanho (Korea Atomic Energy Research Institute) ,  Oh, Jinho (Korea Atomic Energy Research Institute) ,  Koo, Gyeong-Hoi (Korea Atomic Energy Research Institute) ,  Chang, Sungjin (Korea Construction and Transport Engineering Development Collaboratory Management Institute) ,  Jeon, Bubgyu (Korea Construction and Transport Engineering Development Collaboratory Management Institute)

Abstract AI-Helper 아이콘AI-Helper

A nuclear power plant (NPP) piping is designed against low-frequency earthquakes. However, earthquakes that can occur at NPP sites in the eastern part of the United States, northern Europe, and Korea are high-frequency earthquakes. Therefore, this study conducts bi-directional shaking table tests on...

주제어

참고문헌 (39)

  1. R. Morita, K. Saito, A. Yuyama, Development and analysis of seismic experience database of structures, systems and components in nuclear power plants based on investigation reports and maintenance records, Nucl. Eng. Des. 375 (2021) 111078. 

  2. M. Baba, Fukushima accident: what happened? Radiat. Meas. 55 (2013) 17-21. 

  3. S. Kwag, Y. Ryu, B.S. Ju, Efficient seismic fragility analysis for large-scale piping system utilizing Bayesian approach, Appl. Sci. 10 (4) (2020) 1515. 

  4. K. Yoshida, N. Uchida, S. Hiarahara, T. Nakayama, T. Matsuzawa, T. Okada, 2019 M6. 7 Yamagata-Oki earthquake in the stress shadow of 2011 TohokuOki earthquake: was it caused by the reduction in fault strength? Tectonophysics 793 (2020) 228609. 

  5. S. Kwag, A. Gupta, Probabilistic risk assessment framework for structural systems under multiple hazards using Bayesian statistics, Nucl. Eng. Des. 315 (2017) 20-34. 

  6. S. Kwag, A. Gupta, N. Dinh, Probabilistic risk assessment based model validation method using Bayesian network, Reliab. Eng. Syst. Saf. 169 (2018) 380-393. 

  7. S. Kwag, S. Eem, J. Kwak, H. Lee, J. Oh, G.H. Koo, Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device, Nucl. Eng. Technol. 53 (8) (2021) 2728-2745. 

  8. USNRC, Seismic System Analysis. Standard Review Plan, NUREG-0800, Rev. 3, U.S. Nuclear Regulatory Commission, Washington, D.C., USA, 2007. 

  9. USNRC, Development of floor design response spectra for seismic design of floor-supported equipment or components, in: Regulatory Guide 1.122, Rev. 2, U.S. Nuclear Regulatory Commission, Washington, D.C., USA, 1978. 

  10. USNRC, Design Response Spectra for Seismic Design of Nuclear Power Plants. Regulatory Guide 1.60, Rev. 2, U.S. Nuclear Regulatory Commission, Washington, D.C., USA, 2014. 

  11. EPRI, Advanced Nuclear Technology: High-Frequency Seismic Loading Evaluation for Standard Nuclear Power Plants, Electrical Power Research Institute, Palo Alto, California, USA, 2017. Technical Report 3002009429. 

  12. C. Rydell, Seismic High-Frequency Content Loads on Structures and Components within Nuclear Facilities. Doctoral Dissertation, KTH Royal Institute of Technology, 2014. 

  13. I.K. Choi, M. Nakajima, Y.S. Choun, Y. Ohtori, Development of the site-specific uniform hazard spectra for Korean nuclear power plant sites, Nucl. Eng. Des. 239 (4) (2009) 790-799. 

  14. H.M. Rhee, M.K. Kim, D.H. Sheen, I.K. Choi, Analysis of uniform hazard spectra for metropolises in the Korean Peninsula, J. Earthq. Eng. Soc. Korea 17 (2) (2013) 71-77. 

  15. S.H. Eem, I.K. Choi, A shape of the response spectrum for evaluation of the ultimate seismic capacity of structures and equipment including highfrequency earthquake characteristics, J. Earthq. Eng. Soc. Korea 24 (1) (2020) 1-8. 

  16. I.K. Choi, Y.S. Choun, J.M. Seo, K.H. Yun, Reevaluation of seismic fragility parameters of nuclear power plant components considering uniform hazard spectrum, J. Kor. Nuclr. Soc. 34 (6) (2002) 586-595. 

  17. KAERI, Evaluation of High Frequency Ground Motion Effects on the Seismic Capacity of Nuclear Power Plant Equipment, Korean Atomic Energy Research Institute, Daejeon, Republic of Korea, 2003. Technical Report KAERI 2484/2003. 

  18. Y.S. Choun, I.K. Choi, J.M. Seo, Improvement of the seismic safety of existing nuclear power plants by an increase of the component seismic capacity: a case study, Nucl. Eng. Des. 238 (6) (2008) 1410-1420. 

  19. H.S. Park, D.-D. Nguyen, T.-.H. Lee, Effect of high-frequency ground motions on the response of NPP components: a state-of-the-art review, J. Kor. Soc. Haz. Mitig. 17 (6) (2017) 285-294. 

  20. EPRI, Considerations for NPP Equipment and Structures Subjected to Response Levels Caused by High Frequency Ground Motions, Electrical Power Research Institute, Palo Alto, California, USA, 2007. Draft Report. 

  21. EPRI, High Frequency Program: Application Guidance for Functional Confirmation and Fragility Evaluation, Electrical Power Research Institute, Palo Alto, California, USA, 2015. Technical Report 3002004396. 

  22. EPRI, High Frequency Program: High Frequency Testing Summary, Electric Power Research Institute (EPRI), Palo Alto, CA, USA, 2014. Technical Report 3002002997. 

  23. C. Rydell, R. Malm, A. Ansell, Piping system subjected to seismic hard rock high frequencies, Nucl. Eng. Des. 278 (2014) 302-309. 

  24. S. Singh, A. Gupta, Seismic response of electrical equipment subjected to highefrequency ground motions, Nucl. Eng. Des. 374 (2021) 111046. 

  25. M.K. Kim, I.K. Choi, J.M. Seo, A shaking table test for an evaluation of seismic behavior of 480 V MCC, Nucl. Eng. Des. 243 (2012) 341-355. 

  26. H. Son, S. Park, B.G. Jeon, W.Y. Jung, J. Choi, B.S. Ju, Seismic qualification of electrical cabinet using high-fidelity simulation under high frequency earthquakes, Sustainability 12 (19) (2020) 8048. 

  27. B.G. Jeon, H.Y. Son, S.H. Eem, I.K. Choi, B.S. Ju, Dynamic characteristics of single door electrical cabinet under rocking: source reconciliation of experimental and numerical findings, Nucl. Eng. Technol. 53 (7) (2021) 2387-2395. 

  28. J.P. Vayda, Influence of gap size on the dynamic behaviour of piping systems, Nucl. Eng. Des. 67 (2) (1982) 145-164. 

  29. J. Lockau, E. Haas, F. Steinwender, The influence of high-frequency excitation on piping and support design, J. Pressure Vessel Technol. 106 (2) (1984) 177-187. 

  30. F. Steinwender, J. Lockau, J. Rudolph, Experimental investigation of the load transfer behaviour of piping supports under high-frequency excitation, Nucl. Eng. Des. 83 (1) (1984) 27-30. 

  31. A.G. Youtsos, Impact of structural steel flexibility and restraints gaps on the dynamic behaviour of piping, Nucl. Eng. Des. 114 (1) (1989) 135-145. 

  32. A.G. Youtsos, High frequency response evaluation of piping systems, Int. J. Pres. Ves. Pip. 36 (4) (1989) 269-287. 

  33. A. Gupta, M.K. Bose, Significance of non-classical damping in seismic qualification of equipment and piping, Nucl. Eng. Des. 317 (2017) 90-99. 

  34. S. Kwag, A. Gupta, Computationally efficient fragility assessment using equivalent elastic limit state and Bayesian updating, Comput. Struct. 197 (2018) 1-11. 

  35. S. Kwag, J. Park, I.K. Choi, Development of efficient complete-sampling-based seismic PSA method for nuclear power plant, Reliab. Eng. Syst. Saf. 197 (2020) 106824. 

  36. USNRC, A Performance-Based Approach to Define the Site-specific Earthquake Ground Motion. Regulatory Guide 1.208, U.S. Nuclear Regulatory Commission, Washington, D.C., USA, 2007. 

  37. EPRI, Seismic Fragility and Seismic Margin Guidance for Seismic Probabilistic Risk Assessments, Electric Power Research Institute, Palo Alto, CA, USA, 2018. Technical Report 3002012994. 

  38. ASME, Rules for Construction of Nuclear Facility Components. ASME CODE Section III, Division I, Subsection NB, The American Society of Mechanical Engineers, Two Park Avenue, NY, USA, 2007. 

  39. EPRI, Seismic Probabilistic Risk Assessment Implementation Guide, Electric Power Research Institute, Palo Alto, CA, USA, 2013. Technical Report 3002000709. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로