$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

동과 발효물의 조골세포 분화 촉진 및 파골세포 생성 억제 효과
Effect of Fermented Benincasa hispida cong. Extract on Promotion of Osteoblast Differentiation and Inhibition of Osteoclast Generation 원문보기

한국식품위생안전성학회지 = Journal of food hygiene and safety, v.37 no.5, 2022년, pp.364 - 371  

최예은 ((주)하람 중앙연구소) ,  양정모 ((주)하람 중앙연구소) ,  유희원 ((주)하람 중앙연구소) ,  조주현 ((주)하람 중앙연구소)

초록
AI-Helper 아이콘AI-Helper

본 연구는 천연물의 효능을 미생물을 이용하여 증가시키거나 새로운 효능을 도출하고자 하는 연구를 통해 Bacillus subtilis CJH 101 및 Bacillus safensis CJH 102 로 발효한 동과 발효물(HR1901-BS, HR1901-BSaf)의 뼈 건강 관련 효능을 평가하였다. 뼈를 형성하는 조골세포의 증식을 비교한 결과, 동과 발효물은 조골세포의 증식을 농도 유의적으로 증가시키는 것으로 나타났으며 조골세포 분화 유도 및 무기질화에 관여하는 ALP 활성을 효과적으로 촉진시켰다. 또한 조골세포 분화를 조절하는 전사 인자인 ALP, OCN, Runx2의 발현이 증가됨을 확인하였다. 뼈를 흡수하는 파골세포의 활성을 확인하기 위해 TRAP 활성을 측정한 결과 동과 발효물은 TRAP 활성을 유의적으로 억제하는 것을 확인하였다. 따라서 동과 발효물(HR1901-BS, HR1901-BSaf)은 조골세포의 활성 증가 및 파골세포의 활성 억제를 통해 골대사에 긍정적인 영향을 미치므로 뼈 대사 및 골다공증 관련 기능성 식품 소재로 활용 가능할 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

The bones of the human body support the structures of the body and provide protection for a person's internal organs. Bone metabolic diseases are on the rise due to a significant increase in life expectancy over a short period of time. Therefore, we investigated the osteoblast differentiation promot...

주제어

참고문헌 (40)

  1. Frost, H.M., Dynamics of bone remodeling. Bone biodynamics, 315-334 (1964). 

  2. Feng, X., McDonald, J.M., Disorders of bone remodeling. Annu. Rev. Pathol., 6, 121 (2011). 

  3. Papachroni, K.K., Karatzas, D.N., Papavassiliou, K.A., Basdra, E.K., Papavassiliou, A.G., Mechanotransduction in osteoblast regulation and bone disease. Trends Mol. Med., 15, 208-216 (2009). 

  4. Zhu, L., Tang, Y., Li, X.Y., Keller, E.T., Yang, J., Cho, J.S., Weiss, S.J., Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci. Transl. Med., 12, eaaw6143 (2020). 

  5. Blair, H.C., Larrouture, Q.C., Li, Y., Lin, H., Beer-Stoltz, D., Liu, L., Nelson, D.J., Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng. Part B Rev., 23, 268-280 (2017). 

  6. Charles, J.F., Aliprantis, A.O., Osteoclasts: more than 'bone eaters'. Trends Mol. Med., 20, 449-459 (2014). 

  7. Sozen, T., Ozisik, L., Basaran, N.C., An overview and management of osteoporosis. Eur. J. Rheumatol., 4, 46 (2017). 

  8. Nanjing University of Chinese Medicine, Dictionary of Traditional Chinese Medicine, Shanghai Science and Technology Press, 2006. 

  9. Mohammad, N.A., Anwar, F., Mehmood, T., Hamid, A.A., Muhammad, K., Saari, N., Phenolic compounds, tocochromanols profile and antioxidant properties of winter melon [Benincasa hispida (Thunb.) Cogn.] seed oils. J. Food Meas. Charact., 13, 940-948 (2019). 

  10. Sew, C.C., Zaini, N.A.M., Anwar, F., Hamid, A.A., Saari, N., Nutritional composition and oil fatty acids of kundur [Benincasa hispida (Thunb.) Cogn.] seed. Pak. J. Bot., 42, 3247-3255 (2010). 

  11. Moon, C.J., (2006). Coloured illustration for discrimination of herbal medicine IV. Korea Food & Drug Administration p. 38. 

  12. Lee, K.H., Choi, H.R., Kim, C.H., Anti-angiogenic effect of the seed extract of Benincasa hispida Cogniaux. J. Ethnopharmacol., 97, 509-513 (2005). 

  13. Rachchh, M.A., Jain, S.M. Gastroprotective effect of Benincasa hispida fruit extract. Indian J. Pharmacol., 40, 271 (2008). 

  14. Shetty, B.V., Arjuman, A., Jorapur, A., Samanth, R., Yadav, S. K., Valliammai, N., Rao, G. M., Effect of extract of Benincasa hispida on oxidative stress in rats with indomethacin induced gastric ulcers. Indian J. Pharmacol., 52, 178-182 (2008). 

  15. Mandana, B., Russly, A.R., Farah, S.T., Noranizan, M.A., Zaidul, I.S., Ali, G., Antioxidant activity of winter melon (Benincasa hispida) seeds using conventional Soxhlet extraction technique. Int. Food Res. J., 19, 229-234 (2012). 

  16. Moon, M.K., Kang, D.G., Lee, Y.J., Kim, J.S., Lee, H.S., Effect of Benincasa hispida Cogniaux on high glucoseinduced vascular inflammation of human umbilical vein endothelial cells. Vasc. Pharmacol., 50, 116-122 (2009). 

  17. Lim, S.J., Effects of fractions of Benincasa hispida on antioxidative status in streptozotocin induced diabetic rats. J. Nutr. Health., 40, 295-302 (2007). 

  18. Perkins, C., Siddiqui, S., Puri, M., Demain, A.L., (2016). Biotechnological applications of microbial bioconversions. Crit. Rev. Biotechnol., 36, 1050-1065. 

  19. Kiran, E.U., Trzcinski, A.P., Ng, W.J., Liu, Y., Bioconversion of food waste to energy: A review. Fuel, 134, 389-399 (2014). 

  20. Sanchez, S., Demain, A.L., Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org. Process Res. Dev., 15, 224-230 (2011). 

  21. Adler, C.P., Bone diseases: macroscopic, histological, and radiological diagnosis of structural changes in the skeleton. Springer Science & Business Media (2013). 

  22. Long, F., Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol., 13, 27-38 (2012). 

  23. Wang, D., Christensen, K., Chawla, K., Xiao, G., Krebsbach, P. H., Franceschi, R.T., Isolation and characterization of MC3T3?E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res., 14, 893-903 (1999). 

  24. Sudo, H., Kodama, H.A., Amagai, Y., Yamamoto, S., Kasai, S., In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol., 96, 191-198 (1983). 

  25. Golub, E.E., Boesze-Battaglia, K., The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop., 18, 444-448 (2007). 

  26. Gronthos, S., Zannettino, A.C., Graves, S.E., Ohta, S., Hay, S.J., Simmons, P.J., Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J. Bone Miner. Res., 14, 47-56 (1999). 

  27. Moon, K., Lee, S., Cha, J., Bacillus subtilis fermentation of Malva verticillata leaves enhances antioxidant activity and osteoblast differentiation. Foods, 9, 671 (2020). 

  28. Jensen, E.D., Gopalakrishnan, R., Westendorf, J.J., Regulation of gene expression in osteoblasts. Biofactors, 36, 25-32 (2010). 

  29. Stein, G.S., Lian, J.B., Van Wijnen, A.J., Stein, J.L., Montecino, M., Javed, A., Pockwinse, S.M., Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene, 23, 4315-4329 (2004). 

  30. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Kishimoto, T., Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89, 755-764 (1997). 

  31. Long, F., Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol., 13, 27-38 (2012). 

  32. Gronthos, S., Zannettino, A.C., Graves, S.E., Ohta, S., Hay, S.J., Simmons, P.J., Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J. Bone Miner. Res., 14, 47-56 (1999). 

  33. Poulsen, R.C., Kruger, M.C., Soy phytoestrogens: impact on postmenopausal bone loss and mechanisms of action. Nutr. Rev., 66, 359-374 (2008). 

  34. Abdi, F., Alimoradi, Z., Haqi, P., Mahdizad, F., Effects of phytoestrogens on bone mineral density during the menopause transition: a systematic review of randomized, controlled trials. Climacteric, 19, 535-545 (2016). 

  35. Uchiyama, S., Yamaguchi, M., Genistein and zinc synergistically enhance gene expression and mineralization in osteoblastic MC3T3-E1 cells. Int. J. Mol. Med., 19, 213-220 (2007). 

  36. Ming, L.G., Chen, K.M., Xian, C.J., Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J. Cell. Physiol., 228, 513-521 (2013). 

  37. Lee, S.H., Kim, J.K., Jang, H.D., Genistein inhibits osteoclastic differentiation of RAW 264.7 cells via regulation of ROS production and scavenging. Int. J. Mol. Sci., 15, 10605-10621 (2014). 

  38. Li, B., Yu, S., Genistein prevents bone resorption diseases by inhibiting bone resorption and stimulating bone formation. Biol. Pharm. Bull., 26(6), 780-786 (2003). 

  39. Teitelbaum, S.L., Bone resorption by osteoclasts. Science, 289, 1504-1508 (2000). 

  40. Ross, F.P., M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann. N. Y. Acad. Sci., 1068, 110-116 (2006). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로