$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

근권부 국부 냉방이 토마토 묘 생육에 미치는 영향
Effect of Root-zone Local Cooling on Seedling Growth of Tomato 원문보기

생물환경조절학회지 = Journal of bio-environment control, v.31 no.4, 2022년, pp.286 - 291  

김은지 (목포대학교 일반대학원 원예학과) ,  황현승 (제주한라대학교 생명자원학부 환경원예과) ,  주세훈 (목포대학교 일반대학원 원예학과) ,  나해영 (목포대학교 자연과학대학 원예과학과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 근권부 냉방이 토마토 육묘 시 묘 생육에 미치는 영향을 구명하고자 수행되었다. 생장상 하부 파이프 냉방을 이용하여 근권부 온도를 20℃와 25℃로 설정하여 실험을 수행하였다. 전 생육기간동안 초장, 근장, 엽수는 두 온도 처리구간 차이를 보이지 않았다. 엽면적, 지상부와 지하부의 생체중 및 건물중, 엽록소 함량은 파종 28일 경과 시 25℃ 처리구가 더 높았으며, 실험 종료 시 두 처리구 간 유의한 차이를 보이지 않았다. 이상의 결과로 근권부 온도 20℃와 25℃에서 토마토 생육 차이를 확인하지 못했다. 따라서, 본 연구는 고온기 토마토 묘 생산 시 온실 냉방 효율을 높이기 위한 국부 냉방 기술 확립에 도움을 줄 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

The effect of root-zone local cooling on seedling growth of tomato was investigated. Lower pipe cooling was used for local cooling of the root zone, and the root zone temperature was set at 20 and 25℃. There was no difference in plant height, root length, and leaf number according to local co...

주제어

참고문헌 (39)

  1. Bae H.J. 2018, Sweet pepper fruit growth analysis according to fruit set season. MS Thesis. Chonnam University, Gwangju, Korea. (in Korean) 

  2. Barrero-Gil J., R. Huertas, J.L. Rambla, A. Granell, and J. Salinas 2016, Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments. Plant Cell Environ 39:2303-2318. doi:10.1111/pce.12799 

  3. Cho I.H., W.M. Lee, K.B. Kwan, Y.H. Woo, and K.H. Lee 2009, Stable production technique of paprika (Capsicum annuum L.) by hydrogen peroxide treatment at summer. J Bio-Env Con 18:297-301. (in Korean) 

  4. Choi K.Y., J.Y. Ko, H.J. Yoo, E.Y. Choi, H.C. Rhee, and Y.B. Lee 2014, Effect of cooling timing in the root zone on substrate temperature and physiological response of sweet pepper in summer cultivation. Hortic Sci Technol 32:53-59. (in Korean) doi:10.7235/hort.2014.13123 

  5. Dalton F.N., A. Maggio, and G. Piccinni 1997, Effect of root temperature on plant response functions for tomato: comparison of static and dynamic salinity stress indices. Plant Soil 192:307-319. doi:10.1023/a:1004263505595 

  6. De Koning A.N.M. 1990, Long-term temperature integration of tomato. Growth and development under alternating temperature regimes. Sci Hortic 45:117-127. doi:10.1016/0304-4238(90)90074-O 

  7. Huh M-R., Y-S. Kim, Y-G. Seo, Y-G. Shon, and J-C. Park 2001, Effect of root zone temperature on the growth, mineral contents, and activities of antioxidative enzymes of tomato plug seedlings. Hortic Environ Biotechnol 42:147-150. (in Korean) 

  8. Jeong H-K., J-H. Sung, and H-J. Lee 2020, Analysis of social demand for countermeasures in response to extreme weather events in Korean agricultural sector. J Clim Chang Res 11:235-246. (in Korean) doi:10.15531/ksccr.2020.11.4.235 

  9. Ji S-T., J-G. Jeong, C-H. Lim, and C-H. Rhew 2019, A case study of innovation in the agricultural sector of Chinese IT companies: Focusing on Jing-dong (京東). Chin Stud 78: 291-318. (in Korean) 

  10. Kawasaki Y., and Y. Yoneda 2019, Local temperature control in greenhouse vegetable production. Hortic J 88:305-314. doi:10.2503/hortj.UTD-R004 

  11. Kawasaki Y., S. Matsuo, Y. Kanayama, and K. Kanahama 2014, Effect of root-zone heating on root growth and activity, nutrient uptake, and fruit yield of tomato at low air temperatures. J Jpn Soc Hortic Sci 83:295-301. doi:10.2503/jjshs1.MI-001 

  12. Kim D.H., J.H. Yang, H.J. Kim, J.H. Rhee, J.Y. Lee, and S.H. Lim 2020, Recent advances in genetic regulation of chlorophyll metabolism in plants. Korean J Breed Sci 52:281-297. (in Korean) doi:10.9787/KJBS.2020.52.4.281 

  13. Kim S., G. Bok, and J. Park 2018, Analysis of antioxidant content and growth of Agastache rugosa as affected by LED light qualities. J Bio-Env Con 3:260-268. (in Korean) doi: 10.12791/KSBEC.2018.27.3.260 

  14. Kim S-E., S-Y. Sim, S-D. Lee, and Y-S. Kim 2010, Appropriate root-zone temperature control in perlite bag culture of tomato during winter season. Hortic Sci Technol 28:783-789. (in Korean) 

  15. KREI 2022, Agricultural outlook 2022 Korea. Korea Rural Economic Institute, Naju, Korea, pp 539-551. 

  16. Kwack Y., D.S. Kim, and C. Chun 2014, Root-zone cooling affects growth and development of paprika transplants grown in rockwool cubes. Hortic Environ Biotechnol 55:14-18. doi:10.1007/s13580-014-0117-3 

  17. Lee J.B., S.C. Koh, B.Y. Moon, I.H. Park, H.B. Park, and H.S. Chun 2016, Plant physiology (Korean edition). Lifescience, Seoul, Korea, pp 126. (in Korean) 

  18. Lee J.H., J.K. Kwon, O.K. Kwon, Y.H. Choi, and D.K. Park 2002, Cooling efficiency and growth of tomato as affected by root zone cooling methods in summer season. J Bio-Env Con 11:81-87. (in Korean) 

  19. Lee J.H., Y.B. Lee, J.K. Kwon, N.J. Kang, H.J. Kim, Y.H. Choi, J.M. Park, and H.C. Rhee 2006, Effect of greenhouse cooling and transplant quality using geothermal heat pump system. J Bio-Env Con 15:211-216. (in Korean) 

  20. Lee S.H., I.H. Heo, K.M. Lee, S.Y. Kim, Y.S. Lee, and W.T. Kwon 2008, Impacts of climate change on phenology and growth of crops: In the case of Naju. J Korean Geogr Soc 43:20-35. (in Korean) 

  21. Li Y., X. Wen, L. Li, and M. Song 2015, The effect of root-zone temperature on temperature difference between leaf and air in tomato plants. Acta Hortic 1107:251-256. doi:10.17660/ActaHortic.2015.1107.34 

  22. Mizuno S., Y. Muramatsu, A. Tateishi, K. Watanabe, F. Shinmachi, M. Koshioka, and S. Kubota 2022, Effects of root-zone cooling with short-day treatment in pot-grown strawberry (Fragaria ×ananassa Duch.) nurseries on flowering and fruit production. Hortic J 91:1-7. doi:10.2503/hortj.UTD-290 

  23. NIMS 2020, Korean climate change prospect report 2020. National Institute of Meteorological Sciences, Korea, pp 14-15. 

  24. Noh M.Y. 1997, Management of root-zone temperature in substrate culture of tomato. Kor Res Soc Protected Hort 10:97-105. 

  25. Park G.E., E.J. Kim, J.S. Kim, B. Lee, and H. Na 2021, Effect of root zone temperature on germination and growth of paprika seedlings. J Kor Soc Int Agric 33:376-380. doi:10.12719/ksia.2021.33.4.376 

  26. Park K-W., Y-B. Lee, N-H. Choi, and J-C. Jeong 1990, Effects of culture media and nutrient solutions on the yield and quality of cucumber (Cucumis sativus L.) and tomato (Lyocpersicon esculentum Mill.). Korean J Environ Agric 9:143-151. (in Korean) 

  27. Park S.H., J.P. Moon, J.K. Kim, and S.H. Kim 2020, Development of fog cooling control system and cooling effect in greenhouse. Protected Hort Plant Fac 29:265-276. (in Korean) doi:10.12791/ksbec.2020.29.3.265 

  28. Pascual C.S., I.C. Agulto, A.N. Espino, and V.U. Malamug 2019, Effect of ground heat exchanger for root-zone cooling on the growth and yield of aeroponically-grown strawberry plant under tropical greenhouse condition. IOP Conference Series: Earth and Environmental Science. doi:301:10.1088/1755-1315/301/1/012006 

  29. Peet M.M., D.H. Willits, and R. Gardner 1997, Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. J Exp Bot 48:101-111. doi:10.1093/jxb/48.1.101 

  30. RDA 2020, Tomato. Rural Development Administration, Jeonju, Korea, p 68. 

  31. Seo S-M., J-C. Park, and E-K. Rhee 2011, An analysis of thermal loads depending on korea building insulation standard and the optimum insulation standard. J Korean Sol Energy Soc 31:146-155. (in Korean) doi:10.7836/kses.2011.31.5.146 

  32. Stanciu C., D. Stanciu, and A. Dobrovicescu 2016, Effect of greenhouse orientation with respect to e-w axis on its required heating and cooling loads. Energy Procedia 85:498-504. doi:10.1016/j.egypro.2015.12.234 

  33. Suh W-M., Y-H. Bae, H-J. Heo, C-S. Kwak, S-G. Lee, J-W. Lee, and Y-C. Yoon 2009, Analyses of heating and cooling load in greenhouse of protected horticulture complex in Taean. J Korean Soc Agric Eng 51:45-52. (in Korean) doi:10.5389/ksae.2009.51.6.045 

  34. Tindall J.A., H.A. Mills, and D.E. Radcliffe 1990, The effect of root zone temperature on nutrient uptake of tomato. J Plant Nutr 13:939-956. doi:10.1080/01904169009364127 

  35. Van de Dijk S.J., and J.A. Maris 1985, Differences between tomato genotypes in net photosynthesis and dark respiration under low light intensity and low night temperatures. Euphytica 34:709-716. doi:10.1007/BF00035408 

  36. Venema J.H., F. Posthumus, and P.R. Van Hasselt 1999a, Impact of suboptimal temperature on growth, photosynthesis, leaf pigments and carbohydrates of domestic and high-altitude wild Lycopersicon species. J Plant Physiol 155:711-718. doi:10.1016/S0176-1617(99)80087-X 

  37. Venema J.H., F. Posthumus, M. De Vries, and P.R. Van Hasselt 1999b, Differential response of domestic and wild Lycopersicon species to chilling under low light: Growth, carbohydrate content, photosynthesis and the xanthophyll cycle. Physiol Plant 105:81-88. doi:10.1034/j.1399-3054.1999.105113. 

  38. Wahid A., S. Gelani, M. Ashraf, and M.R. Foolad 2007, Heat tolerance in plants: An overview. Environ Exp Bot 61:199-223. doi:10.1016/j.envexpbot.2007.05.011 

  39. Woo S-Y., S.H. Lee, and D-S. Lee 2004, Air pollution effects on the photosynthesis and chlorophyll contents of street trees in Seoul. Korean J Agric For Meteorol 6:24-29. (in Korean) 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로