$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

영농형 태양광 시설 설치에 따른 포도나무 생육 및 과실 특성 변화 비교
Grapevine Growth and Berry Development under the Agrivoltaic Solar Panels in the Vineyards 원문보기

생물환경조절학회지 = Journal of bio-environment control, v.31 no.4, 2022년, pp.356 - 365  

안순영 (영남대학교 원예생명과학과) ,  이단비 (영남대학교 원예생명과학과) ,  이해인 (영남대학교 원예생명과학과) ,  자리민 (영남대학교 원예생명과학과) ,  민상윤 (영남대학교 원예생명과학과) ,  김보명 (영남대학교 화학공학부) ,  오욱 (제주대학교 생물산업학부 원예환경전공) ,  정재학 (영남대학교 화학공학부) ,  윤해근 (영남대학교 원예생명과학과)

초록
AI-Helper 아이콘AI-Helper

영농형 태양광 발전은 농경지에서 작물을 생산함과 동시에 식물이 요구하는 광포화점 이상의 광을 이용하여 전기를 생산하는 시스템이다. 새로운 농가 소득원의 개발을 위하여 포도원에 태양광 패널을 설치하고 수체의 생육과 과실 발육 특성을 평가하여 영농형 태양광의 활용성을 탐색하고 향후 재배기술을 개발하는 데 필요한 정보를 제공하고자 연구를 진행하였다. 152 × 68 × 3.5cm 크기의 구조물에 영농형 150Wp (36cell) 모듈포도나무 재식열에 따라 배치하고, 과원의 환경과 식물생육을 분석하였다. 무처리에는 겨울철 풍속이 0.4-0.6m·s-1에 도달하였으나, 시설 설치구에서는 0.01-0.02m·s-1에 머물렀다. 삽수 수피의 탄수화물함량은 시설 설치구에서 183-184m·g-1으로 무처리구(181-198mg·g-1)에 비해 큰 차이가 없으며 삽수의 발아율도 큰 차이가 없었다. 잎의 엽록소의 함량은 처리구에서 높게 나타났다. 수확후 과실의 특성으로는 과립중, 과방중, 당도, 과피색의 차이는 없었다. 다만 시설구에서 숙기가 5-7일정도 늦어졌으며, 변색기의 착색에는 약간 차이가 있었다. 영농형 태양광 패널을 설치한 과원에서 포도나무와 과실의 발육은 유의차가 없었고, 설치구에서 착색이 지연되었다. 이러한 결과는 향후 포도원에서 영농형 태양광 시설을 설치하여 포도를 생산하는 기술 개발에 필요한 정보로 활용될 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. The agrivoltaic systems are expected to reduce the incident solar radiation, the consequent surface cooling effect, and evapot...

주제어

참고문헌 (58)

  1. Abdel-Mawgoud A.M.R., S.O. El-Abd, S.M. Singer, A.F. Abou-Hadid, and T.C. Hsiao 1996, Effect of shade on the growth and yield of tomato plants. Acta Hortic 434:313-320. doi:10.17660/actahortic.1996.434.38 

  2. Abeysinghe S.K., D.H. Greer, and S.Y. Rogiers 2019, The effect of light intensity and temperature on berry growth and sugar accumulation in Vitis vinifera 'Shiraz' under vineyard conditions. Vitis 58:7-16. doi:10.5073/vitis.2019.58.7-16 

  3. Adeh E.H., J.S. Selker, and C.W. Heggins 2018, Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE 13:e0203256. doi:10.1371/journal.pone.0203256 

  4. An K., C. Yoon, S. Shin, S. Kim, and J. Cho 2021, Characteristics of paddy rice by planting density under agrophotovoltaic module structure. Proc Korean Sol Energy Soc Spring Conf, p 175. (in Korean) 

  5. Arnon D. 1949, Copper enzymes in isolated chhloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1-15. doi:10.1104/pp.24.1.1 

  6. Aroca-Delgado R., J. Perez-Alonso, A.J. Callejon-Ferre, and B. Velazquez-Marti 2018, Compatibility between crops and solar panels: An overview from shading systems. Sustainability 10:743. doi:10.3390/su10030743 

  7. Caravia L., C. Collins, P.R. Petrie, and S.D. Tyerman 2016, Application of shade treatments during Shiraz berry ripening to reduce the impact of high temperature. Aust J Grape Wine Res 22:422-437. doi:10.1111/ajgw.12248 

  8. Cheng D.D., Z.S. Zhang, X.B. Sun, M. Zhao, G. Yusun, and W.S. Chow 2016, Photoinhibition and photoinhibition-like damage to the photosynthetic apparatus in tobacco leaves induced by Pseudomonas syringae pv. tabaco under light and dark conditions. BMC Plant Biol 16:29. doi:10.1186/s12870-016-0723-6 

  9. Cho Y., H. Kim, E. Jo, D. Oh, H. Jeong, C. Yoon, K. An, and J. Cho 2021, Effect of partial shading by agrivoltaic systems panel on electron transport rate and non-photochemical quenching of crop. Korean J Agric For Meteorol 23:100-107. (in Korean) doi:10.5532/KJAFM.2021.23.2.100 

  10. Cossu M., A. Yano, S. Solinas, P.A. Deligios, M.T. Tiloca, A. Cossu, and L. Ledda 2020, Agricultural sustainability estimation of the European photovoltaic greenhouses. Eur J Agron 118:126074. doi:10.1016/j.eja.2020.126074 

  11. Cossu M., L. Ledda, G. Urracci, A. Sirigu, A. Cossu, L. Murgia, A. Pazzona, and A. Yano 2017, An algorithm for the calculation of the light distribution in photovoltaic greenhouses. Sol Energy 141:38-48. doi:10.1016/j.solener.2016.11.024 

  12. Feistel U., S. Kettner, J. Ebermann, and P. Marx 2018, Research on the impact of solar parks on the soil water balance. Trends Green Chem 4:22. doi:10.21767/2471-9889-C1-008 

  13. Ghosh U., Sarkar N., and R.K. Biswas 2018, A review on performance evaluation of drip irrigation system in banana cultivation. J Pharmaco Phytochem 7:866-869. 

  14. Gonocruz R.A., R. Nakamura, K. Yoshino, M. Homma, T. Doi, Y. Yoshida, and A. Tani 2021, Analysis of the rice yield under an agrivoltaic system: A case study in Japan. Environments 8:65. doi:10.3390/environments8070065 

  15. Greer D.H., and M.M. Weedon 2012, Interactions between light and growing season temperatures on growth and development and gas exchange of Semillon (Vitis vinifera L.) vines grown in an irrigated vineyard. Plant Physiol Biochem 54:59-69. doi:10.1016/j.plaphy.2012.02.010 

  16. Hernandez V., P. Hellin, J. Fenoll, I. Garrido, J. Cava, and P. Flores 2015, Impact of shading on tomato yield and quality cultivated with different N doses under high temperature climate. Proc Environ Sci 29:197-198. doi:10.1016/j.proenv.2015.07.259 

  17. Iland P., P. Dry, T. Proffitt, and S. Tyerman 2011, The grapevine: from the science to the practice of growing vines for wine. Patrick Iland Wine Promotions PY Ltd., Adelaide, Australia. 

  18. Israeli Y., Z. Plaut, and A. Schwartz 1995, Effect of shade on banana morphology, growth and production. Sci Hortic 62:45-56. doi:10.1016/0304-4238(95)00763-J 

  19. Jahanfar A., J. Drake, B. Sleep, and L. Margolis 2018, Evaluating the shading effect of photovoltaic panels on green roof discharge reduction and plant growth. J Hydrol 568:919-928. doi:10.1016/j.jhydrol.2018.11.019 

  20. Jones G.F., M.E. Evans, and F.R. Shapiro 2022, Reconsidering beam and diffuse solar fractions for agrivoltaics. Sol Energy 237:135-143. doi:10.1016/j.solener.2022.03.014 

  21. Jung G.B., W.I. Kim, J.S. Lee, J.D. Shin, J.H. Kim, and S.G. Yun 2004, Assessment on the content of heavy metal in orchard soils in middle part of Korea. Korean J Environ Agric 23:15-21. (in Korean) doi:10.5338/KJEA.2004.23.1.015 

  22. Jung J.H. 2020, Current status and prospect of agrovoltaics system. Bull Korea Photovoltaic Soc 6:25-33. (in Korean) 

  23. Jung J.H., W.H. Hwang, H.S. Lee, S.Y. Yang, Y.H. Lim, C.K. Lee, and K.J. Choi 2019, Research and application for crop growth under agrophotovoltaic system. Proc Korean Soc Crop Sci Spring Conf, p 18. (in Korean) 

  24. Kang M.S., S. Sohn, J. Park, J. Kim, S.W. Choi, and S. Choi 2021, Agro-environmental observation in a rice paddy under an agrivoltaic system: Comparison with the environment outside the system. Korean J Agric For Meteorol 23: 141-148. (in Korean) doi:10.5532/KJAFM.2021.23.3.141 

  25. Keller M., K.J. Arnink, and G. Hrazdina 1998, Interaction of nitrogen availability during bloom and light intensity during veraison. I. Effects on grapevine growth, fruit development, and ripening. Am J Enol Vitic 49:333-340. 

  26. Kim D., C. Kim, J. Park, C. Kim, J. Nam, J.Y. Cho, and C. Lim 2020, Computer simulation of lower farmland by the composition of an agrophotovoltaic system. New Renew Energy 16:41-46. (in Korean) doi:10.7849/ksnre.2020.2052 

  27. Kim G.H. 2020, Development of domestic agrophotovoltaic system and analysis and consideration of crops growth characteristics. Bull Korean Photovoltaic Soc 6:15-24. (in Korean) 

  28. Kim G.H., W.R. Kim, C.H. Kim, J. Nam, and C. Lim 2019, Development of Y-pillar integrated agrophotovoltaic structure for fruit tree. Proc Korean Sol Energy Soc Autumn Annual Conf, p 147. (in Korean) 

  29. Kim J.W., Y.K. Hong, H.S. Kim, E.J. Oh, Y.H Park, and S.C. Kim 2021. Metagenomic analysis for evaluating change in bacterial diversity in TPH-contaminated soil after soil remediation. Toxics 9:319. doi:10.3390/toxics9120319 

  30. Ko J., J. Cho, J. Choi, C.Y. Yoon, K.N. An, J.O. Ban, and D.K. Kim 2021, Simulation of crop yields grown under agrophotovoltaic panels: A case study in Chonnam Province, South Korea. Energies 14:8463. doi:10.3390/en14248463 

  31. Korea Rural Economic Institute (KREI) 2021, Agricultural outlook 2021. Korea Rural Economic Institute (KREI), Naju, Korea. (in Korean) 

  32. Koyama K., H. Ikeda, P.R. Poudel, and N. Goto-Yamamoto 2012, Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry 78:54-64. doi:10.1016/j.phytochem.2012.02.026 

  33. Kwon S.E., S.Y. Ahn, Y.S. Park, S.J. Choi, and H.K. Yun 2019, Comparing antioxidant activity and stilbenic and flavonoid compounds for selecting Korean wild grapes useful for grape breeding. Hortic Sci Technol 37:264-278. (in Korean) doi:10.12972/KJHST.20190026 

  34. Lim Y.J., I.K. Kang, D.I. Kim, and D.S. Kim 2015, Flower bud differentiation. In Fruit Science General, Ed 1. Hyangmoonsa, Seoul, Korea. (in Korean) 

  35. Loik M.E., S.A. Carter, G. Alers, C.E. Wade, D. Shugar, C. Corrado, D. Jokerst, and C. Kitayama 2017, Wavelengthselective solar photovoltaic systems: Powering greenhouses for plant growth at the food-energy-water nexus. Earth's Future 5:1044-1053. doi:10.1002/2016EF000531 

  36. Malu P.R., U.S. Sharma, and J.M. Pearce 2017, Agrivoltaic potential on grape farms in India. Sustain Energy Technol Assess 23:104-110. doi:10.1016/J.SETA.2017.08.004 

  37. Marrou H., J. Wery, L. Dufour, and C. Dupraz 2013a, Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. Eur J Agron 44: 54-66. doi:10.1016/j.eja.2012.08.003 

  38. Marrou H., L. Dufour, and J. Wery 2013b, How does a shelter of solar panels influence water flows in a soil-crop system? Eur J Agron 50:38-51. doi:10.1016/J.EJA.2013.05.004 

  39. McGrath D. 1996, Application of single and sequential extraction procedures to polluted and unpolluted soils. Sci Total Environ 178:37-44. doi:10.1016/0048-9697(95)04795-6 

  40. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2021, Agriculture, food and rural affairs statistics year book 2021. Ministry of Agriculture, Food and Rural Affairs (MAFRA), Sejong, Korea. (in Korean) 

  41. Murchie E.H., S. Hubbart, Y. Chen, S. Peng, and P. Horton 2002, Acclimation of rice photosynthesis to irradiance under field conditions. Plant Physiol 130:1999-2010. doi:10.1104/pp.011098 

  42. NIAST 1988, Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea. 

  43. Parkinson S., and J. Hunt 2020, Economic potential for rainfed agrivoltaics in groundwater-stressed regions. Environ Sci Technol Lett 7:525-531. doi:10.1021/acs.estlett.0c00349 

  44. Reasoner M., and A. Ghosh, 2022, Agrivoltaic engineering and layout optimization approaches in the transition to renewable energy technologies: A review. Challenges 13:43. doi:10.3390/challe13020043 

  45. Reynold A.G., and J.E. Vanden Huvel 2009, Influence of grapevine training systems on vine growth and fruit composition: A review. Am J Enol Vitic 60:251-268. 

  46. Rural Development Administration (RDA) 1995, Analysis standard of agricultural and research, Rural Development Administration, Suwon, Korea. (in Korean) 

  47. Schindele S., M. Trommsdorff, A. Schlaak, T. Obergfell, G. Bopp, C. Reise, C. Braun, A. Weselek, A. Bauerle, P. Hogy, A. Goetzberger, and E. R. Weber 2020, Implementation of agrophotovoltaics: Techno-economic analysis of the priceperformance ratio and its policy implications. Appl Energy 265:114737. doi:10.1016/j.apenergy.2020.114737 

  48. Shin D.W., C.H. Lee, Y.M. Jeong, and B.M. Soon 2021, Promoting agricultural photovoltaic: A review of applications, challenges, and opportunities. Korea Environment Institute policy report, Korea Environment Institute (KEI), Sejong, Korea. (in Korean) 

  49. Sohn H.C., H.J. Park, and Y.S. Kim 2019. Economic analysis of Korean agro-photovoltaics power generation. J Reg Stud 27:1-12. (in Korean) 

  50. Takahashi S., and M.R. Badger 2011, Photoprotection in plants: A new light on photosystem II damage. Trends Plant Sci 16:53-60. doi:10.1016/j.tplants.2010.10.001 

  51. Touil S., A. Richa, M. Fizir, and B. Bingwa 2021, Shading effect of photovoltaic panels on horticulture crops production: A mini review. Rev Environ Sci Biotechnol 20:281-296. doi:10.1007/s11157-021-09572-2 

  52. Trommsdorff M., M. Vorast, N. Durga, and S.M. Patwardhan 2021, Potential of agrivoltaics to contribute to socio-economic sustainability: A case study in Maharashtra/India. AIP Conf Proc 2361:040001. doi:10.1063/5.0054569 

  53. Vitisphere 2020, First conclusive results on agrivoltaics in France. Available via https://www.vitisphere.com/news-91310-first-conclusive-results-on-agrivoltaics-in-france.html. Accessed 27 August 2022. 

  54. Vollprecht J., M. Trommsdorff, and C. Hermann 2021, Legal framework of agrivoltaics in Germany. AIP Conf Proc 2361: 020002. doi:10.1063/5.0055133 

  55. Webb L., A. Watt, T. Hill, J. Whitning, F. Wigg, G. Dunn, and S. Barlow 2009, Extreme heat: Managing grapevine response. Univ Melbourne, Melbourne, Australia. 

  56. Winkler J.A., and G.S. Howell 1986, Effect of nitrogen interruption on cold acclimation of potted 'Concord' grapevines. J Am Soc Hortic Sci 111:16-20. doi:10.21273/jashs.111.1.1 

  57. Yoon C., S. Choi, K.N. An, J.H. Ryu, H. Jeong, and J. Cho 2019, Preliminary experiment of the change of insolation under solar panel mimic shading net. Korean J Agric For Meteorol 21:358-365. (in Korean) doi:10.5532/KJAFM.2019.21.4.358 

  58. Zanon A.J., N.A. Streck, and P. Grassini 2016, Climate and management factors influence soybean yield potential in a subtropical environment. Agron J 108:1447-1453. doi:10.2134/agronj2015.0535 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로