$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

전기 추진 수직이착륙기의 초기 사이징에 대한 배터리 민감도 분석
Battery Sensitivity Analysis on Initial Sizing of eVTOL Aircraft 원문보기

한국항공우주학회지 = Journal of the Korean Society for Aeronautical & Space Sciences, v.50 no.12, 2022년, pp.819 - 828  

박민준 (Avionics R&D Center, Hanwha System) ,  최주영 (Avionics R&D Center, Hanwha System) ,  박세환 (Avionics R&D Center, Hanwha System)

초록
AI-Helper 아이콘AI-Helper

본 연구는 일반적인 쿼드 틸트 로터 타입의 전기 추진 수직이착륙 항공기에 대하여 배터리의 성능에 따른 기체 사이징의 민감도를 분석하였다. Uber Elevate와 NASA가 제시한 임무 요구도를 기반으로 초기 기체 사이징을 수행하였으며, 200Wh/kg~400Wh/kg의 배터리 팩 기준 비에너지와 4C~5C의 연속 방전율 범위에 대하여 항공기의 총 중량은 5,000lb~11,000lb으로 예측되었다. 기체 총 중량을 7,000lb를 가정 시 가용 출력과 가용 에너지 측면에서 각각 요구되는 배터리 사양을 도출하였으며, 배터리 비에너지와 방전율의 영향을 분석하였다. 배터리 팩 고장 및 프롭 로터 고장과 같은 조건을 고려하여 배터리 최대 방전율 또한 제시하였다.

Abstract AI-Helper 아이콘AI-Helper

Sensitivity of aircraft sizing depending on battery performance was studied for a generic quad tilt rotor type electric vertical takeoff and landing vehicle. The mission requirements proposed by Uber Elevate and NASA were used for initial sizing, and the calculated gross weight is ranged between 5,0...

주제어

참고문헌 (40)

  1. Moore, M. D., "The Third Wave of Aeronautics: On-Demand Mobility," SAE General Aviation Technology Conference and Exhibition, 2006, pp. 713~722 

  2. Holden, J. and Goel, N., "Fast-Forwarding to a Future of On-Demand Urban Air Transportation," Uber White Paper, 2016. 

  3. Sripad, S. and Viswanathan, V., "The Promise of Energy-efficient Battery-powered Urban Aircraft," Proceedings of the National Academy of Sciences, Vol. 118, No. 45, 2021. 

  4. Kim, D. H., Jang, H. Y. and Hwang, H. Y., "Analyses of Hover Lift Efficiency, Disc Loading and Required Battery Specific Energy for Various eVTOL Type," Journal of Advanced Navigation Technology, Vol. 25, No. 3, 2021, pp. 203~210. 

  5. Uber, "Uber Air Vehicle Requirements and Missions," 2019, viewed September 22, 2022, 

  6. Patterson, M. D., German, B. J. and Moore, M. D., "Performance Analysis and Design of On-Demand Electric Aircraft Concepts," 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization, Indianapolis, IN, September 2012. 

  7. Johnson, W., "NDARC: NASA Design and Analysis of Rotorcraft Theory," NASA/TP- 20220000355, Vol. 1, 2022. 

  8. Johnson, W., "NDARC:NASA Design and Analysis of Rotorcraft Input," NASA/TP-20220000355, Vol. 3, 2022. 

  9. Johnson, W., Silva, C. and Solis, E., "Concept Vehicles for VTOL Air Taxi Operations.," American Helicopter Society Technical Conference on Aeromechanics Design for Transformative Vertical Flight, San Francisco, CA, January 2018. 

  10. Silva, C., Johnson, W. R., Solis, E., Patterson, M. D. and Antcliff, K. R., "VTOL Urban Air Mobility Concept Vehicles for Technology Development," 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, GA, June 2018. 

  11. Radotich, M., "Conceptual Design of Tiltrotor Aircraft for Urban Air Mobility," VFS Aeromechanics for Advanced Vertical Flight Technical Meeting, San Jose, CA, January 25-27, 2022. 

  12. Johnson, W. and Silva, C., "NASA Concept Vehicles and the Engineering of Advanced Air Mobility Aircraft," The Aeronautical Journal, Vol. 126, No. 1295, 2022, pp. 59~91. 

  13. Vegh, J. M., Botero, E., Clarke, M., Smart, J. and Alonso, J. J., "Current Capabilities and Challenges of NDARC and SUAVE for eVTOL Aircraft Design and Analysis," 2019 AIAA Propulsion and Energy 2019 Forum, August 19-22, Indianapolis, IN, 2019. 

  14. Clarke, M. and Alonso, J. J., "Lithium-Ion Battery Modeling for Aerospace Applications," Journal of Aircraft, Vol. 58, No. 6, 2021, pp. 1323~1335. 

  15. Lee, D., Lim, D. and Yee, K., "Generic Design Methodology for Vertical Takeoff and Landing Aircraft with Hybrid-Electric Propulsion," Journal of Aircraft, Vol. 59, No. 2, 2022, pp. 278~292. 

  16. Kim, H. and Yee, K., "A Novel Cost Estimation Method for UAM eVTOLs," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 49, No. 3, 2021, pp. 233~241. 

  17. Kim, H., Kim, H., Lim, D. and Yee, K., "Development of a Multidisciplinary Design Framework for Urban Air Mobility," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 50, No. 8, 2022, pp. 583~590. 

  18. Duffy, M. J., Wakayama, S. R. and Hupp, R., "A Study in Reducing the Cost of Vertical Flight with Electric Propulsion," 17th AIAA Aviation Technology, Integration, and Operations Conference, June 5-9, Denver, CO, 2017. 

  19. Brown, A. and Wesley, L. H., "Vehicle Design and Optimization Model for Urban Air Mobility," Journal of Aircraft, Vol. 57. No. 6, 2020, pp. 1003~1013. 

  20. Fryar, C., Gu, Q., Ogden, C. and Flegal, K., "Anthropometric Reference Data for Children and Adults: United States, 2011-2014," Vital and Health Statistics Series, Vol. 3, No. 39, 2016. 

  21. Chappell, D. and Peyran, R., "Methodology for Estimating Wing Weights for Conceptual Tilt-Rotor and Tilt-Wing Aircraft," SAWE 51st Annual Conference, Hartford, CT, May 18-20, 1992. 

  22. Chappell, D. P., "Tilt-rotor Aircraft Wing Design," ASRO-PDT-83-1, 1983. 

  23. Wood, T. L. and Peryea, M. A., "Reduction of Tiltrotor Download," Journal of the American Helicopter Society, Vol. 40. No. 3, 1995, pp. 42~51. 

  24. Borer, N. K., Patterson, M. D., Viken, J. K., Moore, M. D., Clarke, S., Redifier, M. E., Christie, R. J., Stoll, A. M., Dubois, A., Bevirt, J., Gibson, A., Foster, T. J. and Osterkamp, P. G., "Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator," 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, D.C., June 13-17, 2016. 

  25. Stoll, A. M., Beviert, J., Moore, M. D., Fredericks, W. J. and Borer, N. K., "Drag Reduction through Distributed Electric Propulsion," 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA, June 16-20, 2014. 

  26. Patterson, J. C. Jr. and Flechner, S. G., "Exploratory Wind-Tunnel Investigation of a Wingtip Mounted Vortex Turbine for Vortex Energy Recovery," NASA Technical Paper 2468, June 1985. 

  27. Miranda, L. R. and Brennan, J. E., "Aerodynamic Effects of Wingtip-Mounted Propellers and Turbines," 4th Applied Aerodynamics Conference, San Diego, CA, June 1986. 

  28. Robuck, Mark, et al., "Design Study of Propulsion and Drive Systems for the Large Civil Tilt Rotor (LCTR2) Rotorcraft," 67th AHS Annual Forum and Technology Display, Virginia Beach, VA, May 3-5, 2011. 

  29. Silva C., Calvet, M., Nunez, G. F., Scott, R., Sinsay, J. D. and Vocke, R. D., "The High Efficiency Tiltrotor as a Solution to the Needs of a Mobile Military," AHS Technical Meeting on Aeromechanics Design for Vertical Lift, San Francisco, CA, January 20-22, 2016. 

  30. Whiteside, S. K., Pollard, B. P., Antcliff, K. R., Zawodny, N. S., Fei, X., Silva, C. and Medina, G. L., "Design of a Tiltwing Concept Vehicle for Urban Air Mobility," NASA/TM-20210017971, 2021. 

  31. Harris, F. D. and Scully, M. P., "Rotorcraft Cost Too Much," Journal of the American Helicopter Society, Vol. 43, No. 1, 1998. 

  32. Scott, R., "A Design-Centric Evaluation of Multi-Fidelity Cost Modeling Approaches," 44th European Rotorcraft Forum, Delft, The Netherlands, September 19-20, 2018. 

  33. Office of the Under Secretary of Defense (Comptroller) of U.S. Department of Defense, "National Defense Budget Estimates for FY 1998/2021," March 1997/2020. 

  34. Bureau of Labor Statistics of U.S. Department of Labor, "Consumer Price Index for All Urban Consumers (CPI-U), U.S. City Average," 2020. 

  35. Borlaug, B., Muratori, M., Gerdes, M. and Salisbury, S., "Levelized Cost of Charging Electric Vehicles in the United States," 2020. 

  36. Harris, F. D., "Introduction to Autogyros, Helicopters, and Other V/STOL Aircraft," NASA/SP, 2012-215959, Vol. 2, 2012. 

  37. Wang, M., Diepolder, J., Zhang, S., Sopper, M. and Holzapfel, F., "Trajectory Optimization-based Maneuverability Assessment of eVTOL aircraft," Aerospace Science and Technology, Vol. 117, 2021, 106903. 

  38. Kreimeier, M., "Evaluation of On-demand Air Mobility Concepts with Utilization of Electric Powered Small Aircraft," Doctoral Dissertation, RWTH Aachen University, 2018. 

  39. Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., Chen, M. H., Aykol, M., Herring, P. K., Fraggedakis, D., Bazant, M. Z., Harris, S. J., Chueh, W. C. and Braatz, R. D., "Data-driven Prediction of Battery Cycle Life before Capacity Degradation," Nature Energy, Vol. 4. No. 5, 2019, pp. 383~391. 

  40. Cole, W., Frazier, A. W. and Augustine, C., "Cost Projections for Utility-scale Battery Storage: 2021 Update," NREL/TP-6A20-79236, June 2021. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로