$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

암반 내 불연속면의 장기 전단 거동 평가를 위한 고찰
Case Studies on the Experiments for Long-Term Shear Behavior of Rock Discontinuities 원문보기

터널과 지하공간: 한국암반공학회지 = Tunnel and underground space, v.33 no.1, 2023년, pp.10 - 28  

임주휘 (서울대학교 에너지신산업 혁신공유대학사업단) ,  권새하 (한국원자력연구원) ,  최승범 (한국원자력연구원) ,  김태현 (한국원자력연구원) ,  민기복 (서울대학교 에너지자원공학과)

초록
AI-Helper 아이콘AI-Helper

고준위방사성폐기물 처분장의 장기 안정성을 확보하기 위해서 암반 불연속면의 장기적인 전단 거동을 분석하고 그 안정성을 평가해야 한다. 암반 불연속면의 장기 전단 거동은 크리프 모델, RSF 모델로 모사될 수 있고, 전단 크리프 시험, 속도 단계 시험, 슬라이드-홀드-슬라이드 시험을 통해 모델에 필요한 파라미터를 결정하거나 여러 조건에서 전단 거동을 분석하는 실험을 수행할 수 있다. 기존 연구에 따르면 전단 실험을 위하여 직접전단시험기, 삼축압축시험기, 이축전단시험기가 주로 이용되었으며 현지 암반의 열-수리-역학적인 조건을 재현하기 위해 다양하게 개선된 장비가 이용되었고 그에 따라 다양한 양상의 전단 거동이 관찰되었다. 그러므로 국내 고준위방사성폐기물 처분장을 설계하기 위해서 처분장 부지의 암종, 열-수리-역학적 조건, 광물의 변성, 그리고 전단 저항의 회복 등을 고려하여 암반 불연속면의 장기 거동을 검토해야 한다.

Abstract AI-Helper 아이콘AI-Helper

Long-term shear behavior of the rock discontinuities should be analyzed and its stability should be evaluated to ensure the long-term stability of a high-level radioactive waste disposal repository. The long-term shear behavior of the discontinuities can be modeled with creep and RSF models. The she...

주제어

표/그림 (12)

참고문헌 (45)

  1. An, M., Zhang, F., Min, K.B., Elsworth, D., He, C., and Zhao, L., 2022, Frictional Stability of Metamorphic Epidote in Granitoid?Faults Under Hydrothermal Conditions and Implications for Injection-Induced Seismicity, Journal of Geophysical Research:?Solid Earth, 127(3), e2021JB023136. 

  2. Aydan, O., Ito, T., Ozbay, U., Kwasniewski, M., Shariar, K., Okuno, T., Ozgenoglu, A., Malan, D., and Okada, T., 2015, ISRM?suggested methods for determining the creep characteristics of rock, The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014, 115-130. 

  3. Barton, N., 1973, Review of a new shear-strength criterion for rock joints. Engineering Geology, 7, 287-332. 

  4. Boukharov, G.N., Chanda, M.W., and Boukharov, N.G., 1995, The three processes of brittle crystalline rock creep, In International?Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(4), 325-335. 

  5. Curran, J.H. and Crawford, A.M., 1980, A comparative study of creep in rock and its discontinuities, In The 21st US Symposium on?Rock Mechanics (USRMS), OnePetro, ARMA-80-0596. 

  6. Donath, F.A., Fruth, L.S., and Olsson, W.A., 1972, Experimental study of frictional properties of faults. In The 14th US Symposium?on Rock Mechanics (USRMS), OnePetro, ARMA-72-0189. 

  7. Farmer, I.W., 2012, Engineering behaviour of rocks. Springer Science & Business Media.? 

  8. Foulger, G.R., Wilson, M.P., Gluyas, J.G., Julian, B.R., and Davies, R.J., 2018, Global review of human-induced earthquakes,?Earth-Science Reviews, 178, 438-514. 

  9. Goodman, R.E. and Ohnishi, Y., 1973, Undrained shear testing of jointed rock. Rock Mechanics, 5(3), 129-149. 

  10. Goodman, R.E., 1989, Introduction to rock mechanics, Wiley, New York, 2, 221-388. 

  11. Jaeger, J.C., 1959, The frictional properties of joints in rock. Geofisica pura e applicata, 43(1), 148-158. 

  12. Ji, F., Li, R., Feng, W., and Wang, D., 2020, Modeling and identification of the constitutive behavior of embedded non-persistent?joints using triaxial creep experiments. International Journal of Rock Mechanics and Mining Sciences, 133, 104434. 

  13. Jia, C.J., Xu, W.Y., Wang, R.B., Wang, S.S., and Lin, Z.N., 2018, Experimental investigation on shear creep properties of?undisturbed rock discontinuity in Baihetan Hydropower Station, International Journal of Rock Mechanics and Mining?Sciences, 104, 27-33. 

  14. Kilgore, B., Beeler, N.M., Lozos, J., and Oglesby, D., 2017, Rock friction under variable normal stress, Journal of Geophysical?Research: Solid Earth, 122(9), 7042-7075. 

  15. Kim, T. and Jeon, S., 2016. A Study on Shear Characteristics of a Rock Discontinuity under Various Thermal, Hydraulic and?Mechanical Conditions, Tunnel and Underground Space, 26(1), 68-86. (In Korean) 

  16. Kim, T. and Jeon, S., 2019, Experimental study on shear behavior of a rock discontinuity under various thermal, hydraulic and?mechanical conditions, Rock Mechanics and Rock Engineering, 52(7), 2207-2226. 

  17. Korea Meteorological Administration(KMA), 2021, Annual Report of Earthquake 2021. (In Korean) 

  18. Korean Society of Rock Mechanics(KSRM), 2006, Standard test method for triaxial compression of rock, KSRM suggested method.?(In Korean) 

  19. Korean Society of Rock Mechanics(KSRM), 2009, Standard test methods for determining direct shear strength of rock in laboratory,?KSRM suggested method. (In Korean) 

  20. Korean Society of Rock Mechanics(KSRM), 2021, Suggested method for calculating nominal stress during direct shear test for rock?core samples, KSRM suggested method. (In Korean) 

  21. Kovari, K., Tisa, A., Einstein, H.H., and Franklin, J.A., 1983, Suggested methods for determining the strength of rock materials in?triaxial compression: revised version, In International Journal of Rock Mechanics and Mining Sciences & Geomechanics?Abstracts, 20(6), 285-290. 

  22. Lee, S. and Chang, C., 2013, Laboratory experiments on fracture shearing induced by pore pressure increase, In Proceeding of fall?joint conference of the geological science, Jeju, Korea, 314-315. 

  23. Lockner, D.A., Summers, R., Moore, D., and Byerlee, J.D., 1982, April. Laboratory measurements of reservoir rock from the?Geysers Geothermal Field, California. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics?Abstracts, 19(2), 65-80. 

  24. Marone, C. and Cox, S.J.D., 1994, Scaling of rock friction constitutive parameters: The effects of surface roughness and cumulative?offset on friction of gabbro, Pure and Applied Geophysics, 143(1), 359-385. 

  25. Marone, C., 1997, On the rate of frictional healing and the constitutive law for time-and slip-dependent friction, International?Journal of Rock Mechanics and Mining Sciences, 34(3-4), 187-e1. 

  26. Marone, C., Raleigh, C.B., and Scholz, C.H., 1990, Frictional behavior and constitutive modeling of simulated fault gouge, Journal?of Geophysical Research: Solid Earth, 95(B5), 7007-7025. 

  27. Mitchell, E.K., Fialko, Y., and Brown, K.M., 2013, Temperature dependence of frictional healing of Westerly granite: experimental?observations and numerical simulations, Geochemistry, Geophysics, Geosystems, 14(3), 567-582. 

  28. Mitchell, E.K., Fialko, Y., and Brown, K.M., 2016, Velocity-weakening behavior of Westerly granite at temperature up to 600℃,?Journal of Geophysical Research: Solid Earth, 121(9), 6932-6946. 

  29. Moore, D.E. and Lockner, D.A., 2008, Talc friction in the temperature range 25-400 C: Relevance for fault-zone weakening,?Tectonophysics, 449(1-4), 120-132. 

  30. Moore, D.E. and Lockner, D.A., 2011, Frictional strengths of talc-serpentine and talc-quartz mixtures, Journal of Geophysical?Research: Solid Earth, 116(B1). 

  31. Muralha, J., Grasselli, G., Tatone, B., Blumel, M., Chryssanthakis, P., and Yujing, J., 2014, ISRM suggested method for laboratory?determination of the shear strength of rock joints: revised version, Rock Mechanics and Rock Engineering, 47, 291-302. 

  32. Norbeck, J.H. and Horne, R.N., 2016, Evidence for a transient hydromechanical and frictional faulting response during the 2011?Mw 5.6 Prague, Oklahoma earthquake sequence. Journal of Geophysical Research: Solid Earth, 121(12), 8688-8705. 

  33. Pakpoom, N., 2013, Effect of temperatures on shear strength of fractures in granite, Doctoral dissertation, Suranaree University of?Technology. 

  34. Park, B-K., Lee, C-S., and Jeon, S., 2007, Characteristics of velocity-dependent shear behavior of saw-cut rock joints at different shear velocities, Tunnel and Underground Space, 9(2), 121-131. 

  35. Pluymakers, A.M. and Niemeijer, A.R., 2015, Healing and sliding stability of simulated anhydrite fault gouge: Effects of water,?temperature and CO2, Tectonophysics, 656, 111-130. 

  36. Ruina, A. 1983, Slip instability and state variable friction laws, Journal of Geophysical Research: Solid Earth, 88(B12), 10359-10370. 

  37. Samuelson, J. and Spiers, C.J., 2012, Fault friction and slip stability not affected by CO2 storage: Evidence from short-term?laboratory experiments on North Sea reservoir sandstones and caprocks, International Journal of Greenhouse Gas Control,?11, S78-S90. 

  38. Scuderi, M.M. and Collettini, C., 2016, The role of fluid pressure in induced vs. triggered seismicity: Insights from rock?deformation experiments on carbonates, Scientific Reports, 6(1), 1-9. 

  39. Segall, P., Rubin, A.M., Bradley, A.M., and Rice, J.R., 2010, Dilatant strengthening as a mechanism for slow slip events, Journal of?Geophysical Research: Solid Earth, 115(B12). 

  40. Sharma, S. and Judd, W.R., 1991, Underground opening damage from earthquakes. Engineering Geology, 30(3-4), 263-276. 

  41. Wang, Z., Gu, L., Zhang, Q., and Jang, B.A., 2021, Influence of initial stress and deformation states on the shear creep behavior of?rock discontinuities with different joint roughness coefficients. Rock Mechanics and Rock Engineering, 54(11), 5923-5936. 

  42. Wang, Z., Shen, M., Ding, W., Jang, B., and Zhang, Q., 2018, Time-dependent behavior of rough discontinuities under shearing?conditions, Journal of Geophysics and Engineering, 15(1), 51-61. 

  43. Woo, S., Han, R., Kim, C-M., and Lee, H., 2016, Relation between temporal change of fault rock materials and mechanical?properties, Journal of the Geological Society of Korea, 52(6), 847-861. (In Korean) 

  44. Xu, T., Xu, Q., Tang, C.A., and Ranjith, P.G., 2013, The evolution of rock failure with discontinuities due to shear creep, Acta?Geotechnica, 8, 567-581. 

  45. Yoon, Y-K., Kim, B-C., and Jo, Y-D., 2010, Creep Characteristics of Granite in Gagok Mine, Tunnel and Underground Space,?20(5), 390-398. (In Korean) 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로