$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

압전 특성의 보호층을 통한 리튬 금속 전지의 전기화학적 특성 개선
The Enhanced Electrochemical Performance of Lithium Metal Batteries through the Piezoelectric Protective Layer 원문보기

멤브레인 = Membrane Journal, v.33 no.1, 2023년, pp.13 - 22  

손희상 (광운대학교 화학공학과) ,  박대웅 (광운대학교 화학공학과) ,  신원호 (광운대학교 전자재료공학과)

초록
AI-Helper 아이콘AI-Helper

리튬 금속 기반 전극의 높은 용량에도 불구하고, 제어가 어려운 덴드라이트 성장은 낮은 쿨롱 효율, 안전 문제를 야기해, 리튬금속 배터리의 상용화를 제한한다. 본 연구에서는 압전 복합체인 BaTiO3/PVDF (BTO@PVDF) 기반 보호층을 리튬금속에 코팅, 덴드라이트에 의한 부피팽창으로 발생한 변형을 분극을 이용하여, 리튬 금속 전극의 안정성 및 성능을 향상하고자 한다. 이를 통해, 균일한 리튬이온증착이 가능해졌으며, BTO@PVDF 전극은 100 사이클 동안 약 98.1% 이상의 쿨롱 효율을 나타내었다. 또한, CV를 통해 향상된 리튬이온의 확산계수(DLi+) 증가를 보였으며, 본 연구에서 제시된 전략은 리튬 금속 전극의 성능 향상에 새로운 길을 나타내준다.

Abstract AI-Helper 아이콘AI-Helper

Despite high capacity of lithium metal anode, its uncontrollable dendrite growth results in the poor electrochemical (EC) performance (low Coulomb efficiency and limited cycle stability) and unsafe operation. In this study, we demonstrated a lithium metal anode protected with BaTiO3/PVDF based piezo...

주제어

참고문헌 (62)

  1. F. Dai, R. Yi, H. Yang, Y. Zhao, L. Luo, M. L. Gordin, H. Sohn, S. Chen, C. Wang, S. Zhang, and D. Wang, "Minimized volume expansion in hierarchical porous silicon upon lithiation", ACS Appl. Mater. Interfaces, 11, 13257 (2019). 

  2. H. Sohn, D. H. Kim, R. Yi, D. Tang, S. E. Lee, Y. S. Jung, and D. Wang, "Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries", J. Power Sources, 334, 128 (2016). 

  3. D. Y. Oh, Y. E. Choi, Y. G. Lee, J. N. Park, H. Sohn, and Y. S. Jung, "All-solid lithium-ion batteries with TiS 2 nanosheet and sulfide solid electrolytes", J. Mater. Chem. A, 4, 10329 (2016). 

  4. Q. Xiao, H. Sohn, Z. Chen, D. Toso, M. Mecklenburg, Z. H. Zhou, E. Poirier, A. Dailly, H. Wang, Z. Wu, M. Cai, and Y. Lu, "Mesoporous metal and metal alloy particles synthesized by aerosol-assisted confined growth of nanocrystals", Angew. Chem. Int. Ed., 51, 10546 (2012). 

  5. G. Eshetu, H. Zhang, X. Judez, H. Adenusi, M. Armand, S. Passerini, and E. Figgemeier, "Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes", Nature Commun., 12, 5459 

  6. Y. Ding, Z. Cano, A. Yu, J. Lu, and Z. Chen, "Automotive Li-Ion batteries: current status and future perspectives", Electrochem. Energ., 2, 1 (2019). 

  7. S. Kim, "Recent developments in anode materials for Li secondary batteries", J. Kor. Electrochem. Soc., 3, 211 (2008). 

  8. S. Sivakkumar, J. Nerkar, and A. Pandolfo, "Rate capability of graphite materials as negative electrodes in lithium-ion capacitors", Electrochim. Acta, 55, 3330 (2010). 

  9. P. Guo, H. Song, and X. Chen, "Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries", Electrochem. Commun., 11, 1320 (2009). 

  10. J. Lim, J. Won, M. Kim, D. Jung, M. Kim, S. Koo, J. Oh, H. Jeong, H. Sohn, W. Shin, and C. Park, "Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage", J. Mater. Chem. A, 10, 7668 (2022). 

  11. Y. Jeong, J. Park, S. Lee, S. H. Oh, W. J. Kim, Y. J. Ji, G. Y. Park, D. Seok, W. Shin, J. Oh, T. Lee, C. Park, A. Seubsaic, and H. Sohn, "Iron oxide-carbon nanocomposites modified by organic ligands: Novel pore structure design of anode materials for lithium-ion batteries", J. Elec. Anal. Chem., 904, 115905 (2022). 

  12. K. Hwang, N. Kim, Y. Jeong, H. Sohn, and S. Yoon, "Controlled nanostructure of a graphene nanosheet-TiO 2 composite fabricated via mediation of organic ligands for high-performance Li storage applications", Int. J. Energy Res., 45, 16189 

  13. D. Seok, W. Shin, S. Kang, and H. Sohn, "Piezoelectric composite of BaTiO 3 -coated SnO 2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li + mobility", J. Alloys Comp., 870, 159267 

  14. M. Kim, D. Ko, J. Kim, E. Cho, D. Yang, C. Kwak, and H. Sohn, "Silver nanowires network film with enhanced crystallinity toward mechano-electrically sustainable flexible-electrode", Adv. Mater. Inter., 6, 2000838 (2020). 

  15. H. Sohn, W. Shin, D. Seok, T. Lee, C. Park, J. Oh, S. Kim, and A. Seubsai, "Novel hybrid conductor of irregularly patterned graphene mesh and silver nanowire networks", Micromachines, 11, 578 (2020). 

  16. D. Seok, Y. Kim, and H. Sohn, "Synthesis of Fe 3 O 4 /porous carbon composite for efficient Cu 2+ ions removal", Membr. J., 29, 308 (2019). 

  17. D. Seok, Y. Jeong, K. Han, D. Yoon, and H. Sohn, "Recent progress of electrochemical energy devices: Metal oxide-carbon nanocomposites as materials for next-generation chemical storage for renewable energy", Sustainability, 11, 3694 (2019). 

  18. H. Sohn, Q. Xiao, A. Seubsai, Y. Ye, J. Lee, H. Han, S. Park, G. Chen, and Y. Lu, "Thermally robust porous bimetallic (Ni x Pt 1-x ) alloy particles within carbon framework: High-performance catalysts for hydrogenation reaction and oxygen reduction reaction", ACS Appl. Mater. Interfaces, 11, 21435 (2019). 

  19. K. Hwang, H. Sohn, and S. Yoon, "Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO 2 -C) composite as an anode for high-performance lithium-ion batteries", J. Power Sources, 378, 225 (2018). 

  20. H. Sohn, S. Kim, W. Shin, J. Lee, K. Moon, H. Lee, D. Yun, I. Han, C. Kwak, and S. Hwang, "Novel flexible transparent conductive films with enhanced chemical and electro-mechanical sustainability: TiO 2 nanosheet-Ag nanowire hybrid", ACS Appl. Mater. Interfaces, 10, 2688 (2018). 

  21. K. Kisu, S. Kim, T. Shinohara, K. Zhao, A. Zuttel, and S. Orimo, "Monocarborane cluster as a stable fluorine-free calcium battery electrolyte", Sci. Rep., 11, 7563 

  22. L. Liu, Y. Yin, J. Li, N. Li, X. Zeng, H. Ye, Y. Guo, and L. Wan, "Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes", Joule, 1, 563 (2017). 

  23. P. G. Bruce, S. A. Freunberger, L. Hardwick, and J. Tarascon, "Li-O 2 and Li-S batteries with high energy storage", Nature Mater., 11, 19 (2012). 

  24. X. Liang, Q. Pang, I. Kochetkov, M. Sempere, H. Huang, X. Sun, and L. Nazar, "A facile surface chemistry route to a stabilized lithium metal anode", Nature Energy, 2, 17119 (2017). 

  25. N. Xu, L. Li, Y. He, Y. Tong, and Y. Lu, "Understanding the molecular mechanism of lithium deposition for practical high-energy lithium-metal batteries", J. Mater. Chem. A, 8, 6229 (2020). 

  26. A. Pei, G. Zheng, F. Shi, Y. Li, and Y. Cui, "Nanoscale nucleation and growth of electrodeposited lithium metal", Nano Lett., 17, 1132 (2017). 

  27. C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, Z. Lee, M. Lee, J. Alvarado, M. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang, and Y. Meng, "Quantifying inactive lithium in lithium metal batteries", Nature, 572, 511 (2019). 

  28. H. Zhou, S. Yu, H. Liu, and P. Liu, "Protective coatings for lithium metal anodes: recent progress and future perspectives", J. Power Sources, 450, 227632 (2020). 

  29. X. Cheng, C. Zhao, Y. Yao, H. Liu, and Q. Zhang, "Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes", Chem., 5, 74 (2019). 

  30. D. Lin, Y. Liu, Z. Liang, H. Lee, W. Sun, J. Wang, H. Yan, J. Xie, and Y. Cui, "Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes", Nature Nanotechnol., 11, 626 (2016). 

  31. S. Liu, A. Wang, Q. Li, J. Wu, K. Chio, J. Huang, and J. Luo, "Crumpled graphene balls stabilized dendrite-free lithium metal anodes", Joule, 2, 184 (2018). 

  32. R. Zhang, X. Cheng, C. Zhao, H. Peng, J. Shi,, J. Huang, J. Wang, F. Wei, and Q. Zhang, "Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth", Adv. Mater., 28, 2155 (2016). 

  33. C. Yang, Y. Yin, S. Zhang, N. Li, and Y. G. Guo, "Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes", Nature Commun., 6, 8058 (2015). 

  34. Q. Li, S. Zhu, and Y. Lu, "3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries", Adv. Mater., 27, 1606422 (2017). 

  35. W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y. Chiang, and Y. Cui, "The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth", Nature Commun., 6, 7436 (2015). 

  36. X. Cheng, R. Zhang, C. Zhao, and Q. Zhang, "Toward safe lithium metal anode in rechargeable batteries: A review", Chem. Rev., 117, 10403 (2017). 

  37. Y. Gao, Z. Yan, J. Gray, X. He, D. Wang, T. Chen, Q. Huang, Y. Li, H. Wang, S. Kim, T. Mallouk, and D. Wang, "Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions", Nature Mater., 18, 384 (2019). 

  38. D. Lin, Y. Liu, and Y. Cui, "Reviving the lithium metal anode for high-energy batteries", Nature Nanotechnol., 12, 194 (2017). 

  39. X. Zhang, X. Cheng, and Q. Zhang, "Advances in interfaces between Li metal anode and electrolyte", Adv. Mater. Interfaces., 5, 1701097 (2018). 

  40. X. Cheng, R. Zhang, C. Zhao, and Q. Zhang, "Toward safe lithium metal anode in rechargeable batteries: A review", Chem. Rev., 117, 10403 (2018). 

  41. S. Lee, S. Choi, J. Hyun, D. Kim, Y. Park, J. Yu, S. Jeon, J. Park, W. Shin, and H. Sohn, "Nanostructured PVdF-HFP/TiO 2 composite as protective layer on lithium metal battery anode with enhanced electrochemical performance", Membr. J., 31, 417 

  42. S. Lee, D. Seok, Y. Jeong, and H. Sohn, "Surface modification of Li metal electrode with PDMS/GO composite thin film: controlled growth of Li layer and improved performance of lithium metal battery (LMB)", Membr. J., 30, 38 (2020). 

  43. Y. Jeong, D. Seok, S. Lee, W. Shin, and H. Sohn, "Polymer/inorganic nanohybrid membrane on lithium metal electrode: Effective control of surficial growth of lithium layer and its improved electrochemical performance", Membr. J., 30, 30 (2020). 

  44. J. Xiang, Z. Cheng, Y. Zhao, B. Zhang, L. Yuan, Y. Shen, Z. Guo, Y. Zhang, J. Jiang, and Y. Huang, "A lithium-ion pump based on piezoelectric effect for improved rechargeability of lithium metal anode", Adv. Sci., 6, 1901120 (2019). 

  45. L. Lu, W. Ding, J. Liu, and B. Yang, "Flexible PVDF based piezoelectric nanogenerators", Nano Energy, 78, 105251 (2020). 

  46. Y. Yang, W. Guo, Y. Zhang, Y. Ding, X. Wang, and Z. Wang, "Piezotronic effect on the output voltage of P3HT/ZnO micro/nanowire heterojunction solar cells", Nano Lett., 11, 4812 (2011). 

  47. S. Shin, Y. Kim, M. Lee, J. Jung, and J. Nah, "Hemispherically aggregated BaTiO 3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator", ACS Nano, 8, 2766 (2014). 

  48. Y. Zhao, Q. Liao, G. Zhang, Z. Zhang, Q. Liang, X. Liao, and Y. Zhang, "Highoutput piezoelectric nanocomposite generators composed of oriented BaTiO 3 NPs@PVDF", Nano Energy, 11, 719 (2015). 

  49. J. Fu, Y. Hou, X,. Gao, M. Zheng, and M. Zhu, "Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi 3 O 5 nanorods with high power density", Nano Energy, 52, 391 (2018). 

  50. Mokhtari, F. Spinks, G. Fay, C. Cheng, Z. Raad, R. Xi, and J. Foroughi, "Wearable electronic textiles from nanostructured piezoelectric fibers", Adv. Mater. Technol., 5, 1900900 (2020). 

  51. W. Li-zhu, Z. Chang-song, W. Chu, and W. Ru-peng, "The preparation of PVDF-BTO composite film and the influence of polarization intensity on the piezoelectric properties of composite film", J. Appl. Phys., 1948, 012191 

  52. X. Guan, B. Xu, and J. Gong, "Hierarchically architected polydopamine modified BaTiO 3 @P(VDFTrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors", Nano Energy, 70, 104516 (2020). 

  53. Y. Wu, G. Wang, Z. Jiao, Y. Fan, P. Peng, and X. Dong, "High electrostrictive properties and energy storage performances with excellent thermal stability in Nb-doped Bi 0.5 Na 0.5 TiO 3 -based ceramics", RSC Adv., 9, 21355 (2019). 

  54. Martins P, Lopes, and A. Lanceros-Mendez, "Electroactive phases of poly(vinylidene fluoride): determination, processing and applications", Prog. Polym. Sci., 39, 683 (2014). 

  55. V. Cardoso, F. Catarino, S. Serrado Nunes, J. Rebouta, L. Rocha, J. Lanceros-Mendez, and S. Minas, "Lab-on-a-chip with beta-poly(vinylidene fluoride) based acoustic microagitation", IEEE. Trans. Biomed. Eng., 57, 1184 (2010). 

  56. V. Cardoso, G. Minas, C. Costa, C. Tavares, and S. Lanceros-Mendez, "Micro and nanofilms of poly(vinylidene fluoride) with controlled thickness, morphology and electroactive crystalline phase for sensor and actuator applications", Smart Mater. Struct., 20, 087002 (2011). 

  57. P. Sajkiewicz, A. Wasiak. and Z. Goclowski, "Phase transitions during stretching of poly(vinylidene fluoride)", Eur. Polym. J., 35, 423 (1999). 

  58. I. Wan, X. Zhang, Z. Liu, J. Zhang, Z. Li, Z. Lin Wang, and L. Li, "Noninvasive manipulation of cell adhesion for cell harvesting with piezoelectric composite film", Appl. Mater. Today, 25, 101218 (2021). 

  59. T. Gao, C. Rainey, and W. Lu, "Piezoelectric mechanism and a compliant film to effectively suppress dendrite growth", ACS Appl. Mater. Interfaces, 12, 51448 (2020) 

  60. X. Gao, Y. Zhou, D. Han, J. Zhou, D. Zhou, W. Tang, and J. Goodenough, "Thermodynamic understanding of Li-dendrite formation", Joule, 4, 1864 (2020). 

  61. A. Pei, G. Zheng, F. Shi, Y. Li, and Y. Cui, "Nanoscale nucleation and growth of electrodeposited lithium metal", Nano Lett., 17, 1132 (2017). 

  62. S. Xia, Y. Zhao, J. Yan, J. Yu, and B. Ding, "Dynamic regulation of lithium dendrite growth with electromechanical coupling effect of soft BaTiO 3 ceramic nanofiber films", ACS Nano, 15, 3161 (2021). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로