$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

분류군별 외래생물 탐지를 위한 환경 DNA 메타바코딩 활용 가능성
Feasibility of Environmental DNA Metabarcoding for Invasive Species Detection According to Taxa 원문보기

환경영향평가 = Journal of environmental impact assessment, v.32 no.2, 2023년, pp.94 - 111  

강유진 (서울대학교 협동과정조경학) ,  전정은 (서울대학교 환경대학원 환경조경학과) ,  한승우 (서울대학교 협동과정조경학) ,  원수연 (서울대학교 협동과정조경학) ,  송영근 (서울대학교 환경대학원 환경조경학과)

초록
AI-Helper 아이콘AI-Helper

효과적인 외래생물 관리 전략 수립을 위해서는 도입 및 확산 여부 평가를 위한 정기 모니터링이 요구된다. 환경 DNA (eDNA, environmental DNA) 메타바코딩은 높은 검출 민감도를 가지고 다수의 종을 동시에 검출할 수 있어 외래생물의 출현 여부와 그 영향을 평가하는데 활발히 활용되고 있다. 국내에서는 어류를 중심으로 메타바코딩의 적용 가능성 평가가 이루어지고 있으며 타 분류군에 대한 연구는 부족한 실정이다. 따라서 본 연구에서는 환경 DNA 메타바코딩을 활용한 국내 외래생물 탐지 가능성을 확인하고자 했다. 분류군별 검출 가능성을 확인하기 위해 어류, 포유류, 조류, 양서류를 목표로 디자인 된 4가지 범용 프라이머(MiFish, MiMammal, Mibird, Amp16S)를 활용하여 대상종 검출 여부를 평가하였다. 그 결과, 총 55개 지점 중 17개 지점(Trachemys scripta, 3개 지점; Cervus nippon, 3개 지점; Micropterus salmoides, 7개 지점; Rana catesbeiana, 4개 지점)에서 대상종의 서식이 확인되었다. 대상지 내 조밀한 지점 선정에도 생태적 특성을 반영한 검출 지점에 차이가 나타났다. 큰입배스와 붉은귀거북을 중심으로 외래생물이 출현이 생물 군집구조(종 풍부도, 풍부도, 다양도)에 미치는 영향을 비교한 결과, 외래생물이 서식하는 지점에서의 다양도가 더 높게 나타났다. 또한 외래생물 출현 지점에서 출현 종 수가 1~4종 추가 검출되었으며 풍부도 또한 1.7배 높게 나타났다. 메타바코딩을 통한 외래생물 검출 결과 및 군집구조 비교는 eDNA를 통한 다량의 모니터링 데이터 구축이 다차원적 생태계 평가에 효율적으로 활용될 수 있음을 나타냈다. 또한 환경의 인위적, 자연적 변화에 따른 생물상 변화를 관찰하고 자연생태 분야의 환경영향평가 등 현황 평가 및 예측을 위한 주요한 기초자료로 활용 가능성을 제시하였다.

Abstract AI-Helper 아이콘AI-Helper

In order to establish an effective management strategy for invasive species early detection and regular monitoring are required to assess their introduction or dispersal. Environmental DNA (eDNA) is actively applied to evaluate the fauna including the presence of invasive species as it has high dete...

주제어

표/그림 (7)

참고문헌 (47)

  1. Czegledi I, Saly P, Specziar A, Preiszner B, Szaloky?Z, Maroda A, Pont D, Meulenbroek P,?Valentini A, Eros T. 2021. Congruency?between two traditional and eDNA-based?sampling methods in characterising taxonomic?and trait-based structure of fish communities?and community-environment relationships?in lentic environment. Ecol Indic. 129.?https://doi.org/10.1016/j.ecolind.2021.107952 

  2. Deiner K, Altermatt F. 2014. Transport Distance?of Invertebrate Environmental DNA in a?Natural River. PLoS One 9, e88786. https://doi.org/10.1371/JOURNAL.PONE.0088786 

  3. Dorazio RM, Erickson RA. 2018. ednaoccupancy:?An r package for multiscale occupancy?modelling of environmental DNA data. Mol?Ecol Resour [Internet]. [accessed 2022 Jul?8] 18(2): 368-380. https://doi.org/10.1111/1755-0998.12735 

  4. Gang HS, I BG, Han DH, G HR, Jo SC, Gim?TH. 2015. A Study on the Management?and Utilization of the Saetgang Stream in?the Han River. Korea Environment?Institute. https://doi.org/10.23000/TRKO201800014468 [Korean Literature] 

  5. Hashemzadeh Segherloo I, Tabatabaei SN, Abdolahi-Mousavi E, Hernandez C, Normandeau E,?Laporte M, Boyle B, Amiri M, GhaedRahmati?N, Hallerman E, Bernatchez L. 2022.?eDNA metabarcoding as a means to assess?distribution of subterranean fish communities:?Iranian blind cave fishes as a case study.?Environmental DNA [Internet]. [accessed?2022 Oct 23] 4(2): 402-416. https://doi.org/10.1002/EDN3.264 

  6. Information of Korean Alien Specie [Internet]. c?2001-2022. National Institute of Ecology;?[Cited January 10, 2023]. Available from:?https://kias.nie.re.kr/home/for/for02002v.do?clsSno20700&searchClsGbnfor 

  7. Rourke ML, Fowler AM, Hughes JM, Broadhurst?MK, DiBattista JD, Fielder S, Wilkes WJ,?Furlan EM. 2022. Environmental DNA?(eDNA) as a tool for assessing fish biomass: A?review of approaches and future considerations?for resource surveys. Environmental DNA,?4(1), 9-33. https://doi.org/10.1002/EDN3.185 

  8. Kakuda A, Doi H, Souma R, Nagano M, Minamoto?T, Katano I. 2019. Environmental DNA?detection and quantification of invasive?red-eared sliders, Trachemy scripta elegans,?in ponds and the influence of water?quality. PeerJ. 2019(12): 1-19. https://doi.org/10.7717/peerj.8155 

  9. Kim GW, Song YK. 2021. Identification of?Freshwater Fish Species in Korea Using?Environmental DNA Technique-From the?Experiment at the Freshwater Fish Ecological?Learning Center in Yangpyeong, Gyeonggi?Do. J Environ Impact Assess [Internet].?[accessed 2022 Jul 2] 30(1): 1-12. https://doi.org/10.14249/eia.2021.30.1.1 [Korean?Literature] 

  10. Kim JH, Jo H, Chang MH, Woo SH, Cho Y,?Yoon JD. 2020. Application of Environmental?DNA for Monitoring of Freshwater Fish?in Korea. Korean Journal of Ecology and?Environment 53(1): 63-72. https://doi.org/10.11614/ksl.2020.53.1.063 [Korean?Literature] 

  11. Leempoel K, Hebert T, Hadly EA. 2020. A?comparison of eDNA to camera trapping?for assessment of terrestrial mammal diversity.?Proceedings of the Royal Society B [Internet].?[accessed 2022 Sep 3] 287(1918). https://doi.org/10.1098/RSPB.2019.2353 

  12. Li F, Peng Y, Fang W, Altermatt F, Xie Y, Yang?J, Zhang X. 2018. Application of?Environmental DNA Metabarcoding for?Predicting Anthropogenic Pollution in?Rivers [Internet]. [accessed 2020 Aug 12].?https://doi.org/10.1021/acs.est.8b03869 

  13. Lintermans M. 2016. Finding the needle in the?haystack: Comparing sampling methods for?detecting an endangered freshwater fish.?Marine and Freshwater Research 67(11):?1740-1749. https://doi.org/10.1071/MF14346 

  14. Lozano Mojica JD, Caballero S. 2021. Applications?of eDNA Metabarcoding for Vertebrate?Diversity Studies in Northern Colombian?Water Bodies. Front Ecol Evol. 8. https://doi.org/10.3389/fevo.2020.617948 

  15. Minamoto T, Yamanaka H, Takahara T, Honjo?MN, Kawabata Z. 2012. Surveillance of fish?species composition using environmental?DNA. Limnology (Tokyo). 13(2): 193-197.?https://doi.org/10.1007/s10201-011-0362-4 

  16. University. http://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cnTRKO202200004244 [Korean Literature] 

  17. Ministry of Environment. 2022. Act On the?Conservation And Use of Biological?Diversity [Internet]. [accessed 2022 Oct?23]. https://law.go.kr/%ED%96%89%EC%A0%95%EA%B7%9C%EC%B9%99/%EC%83%9D%ED%83%9C%EA%B3%84%EA%B5%90%EB%9E%80%EC%83%9D%EB%AC%BC%EC%A7%80%EC%A0%95%EA%B3%A0%EC%8B%9C?[Korean Literature] 

  18. Ministry of Environment. 2017a. 4th National?Natural Environment Survey: Ichthyofauna?from midstream catchment of Anyang?stream [Internet]. https://www.nie-ecobank.kr/ecoki/bitstream/2018.oak/4610/1/안양천상류_101814_어류.pdf [Korean Literature] 

  19. Ministry of Environment. 2017b. 4th National?Natural Environment Survey: Ichthyofauna?from midstream catchment of Anyang?stream [Internet]. https://www.nieecobank.kr/ecoki/bitstream/2018.oak/4611/1/안양천중류_101815_어류.pdf [Korean Literature] 

  20. Ministry of Environment. 2019. The 2nd Alien?Speices Management Plan (2019-2023)?[Internet]. [accessed 2022 Oct 23]: 1-77. https://kias.nie.re.kr/home/bbs/bbs01002v.do?bbsSno11191&bbsManSno1 [Korean?Literature] 

  21. Ministry of Environment. 2022. Developing a real-time web-based positioning surveillance?system customized for introduced exotic?species [Internet]. Seoul National 

  22. Mizumoto H, Kishida O, Takai K, Matsuura N,?Araki H. 2022. Utilizing environmental?DNA for wide-range distributions of?reproductive area of an invasive terrestrial?toad in Ishikari river basin in Japan. Biol?Invasions [Internet]. [accessed 2022 Oct 23]?24(4): 1199-1211.https://doi.org/10.1007/S10530-021-02709-Y/FIGURES/3 

  23. Miya M, Sato Y, Fukunaga T, Sado T, Poulsen?JY, Sato K, Minamoto T, Yamamoto S,?Yamanaka H, Araki H, Kondoh M, Iwasaki?W. 2015. MiFish, a set of universal PCR?primers for metabarcoding environmental?DNA from fishes: detection of more than?230 subtropical marine species. R Soc?Open Sci 2, 150088. https://doi.org/10.1098/rsos.150088 

  24. Muha TP, Rodriguez-Rey M, Rolla M, Tricarico?E. 2017. Using environmental DNA to?improve species distribution models for?freshwater invaders. Front Ecol Evol?[Internet]. [accessed 2021 May 12] 5(DEC): 158. https://doi.org/10.3389/fevo.2017.00158 

  25. Murakami H, Yoon S, Kasai A, Minamoto T,?Yamamoto S, Sakata MK, Horiuchi T,?Sawada H, Kondoh M, Yamashita Y,?Masuda R. 2019. Dispersion and degradation?of environmental DNA from caged fish in?a marine environment. Fisheries Science 85:?327-337. https://doi.org/10.1007/S12562-018-1282-6/FIGURES/7 

  26. Nevers MB, Przybyla-Kelly K, Shively D, Morris?CC, Dickey J, Byappanahalli MN, 2020.?Influence of sediment and stream transport?on detecting a source of environmental?DNA. PLoS One 15, e0244086. https://doi.org/10.1371/JOURNAL.PONE.0244086 

  27. Di MC, Handley LL, Bean CW, Li J, Peirson G,?Sellers GS, Walsh K, Watson HV, Winfield?IJ, Hanfling B. 2020. Read counts from?environmental DNA (eDNA) metabarcoding?reflect fish abundance and biomass in?drained ponds. Metabarcoding Metagenom.?4: 97-112. https://doi.org/10.3897/MBMG.4.56959 

  28. Rubenson ES, Olden JD. 2020. An invader in?salmonid rearing habitat: Current and?future distributions of smallmouth bass?(micropterus dolomieu) in the Columbia?river basin. Canadian Journal of Fisheries?and Aquatic Sciences [Internet]. [accessed?2022 Oct 15] 77(2): 314-325. https://doi.org/10.1139/CJFAS-2018-0357/SUPPL_FILE/CJFAS-2018-0357SUPPLA.PDF 

  29. Saenz-Agudelo P, Delrieu-Trottin E, DiBattista?JD, Martinez-Rincon D, Morales-Gonzalez?S, Pontigo F, Ramirez P, Silva A, Soto M,?Correa C. 2022. Monitoring vertebrate?biodiversity of a protected coastal wetland?using eDNA metabarcoding. Environmental?DNA 4(1): 77-92. https://doi.org/10.1002/edn3.200 

  30. Sard NM, Herbst SJ, Nathan L, Uhrig G, Kanefsky?J, Robinson JD, Scribner KT. 2019.?Comparison of fish detections, community?diversity, and relative abundance using?environmental DNA metabarcoding and?traditional gears. Environmental DNA 1(4):?368-384. https://doi.org/10.1002/edn3.38 

  31. Sato Y, Miya M, Fukunaga T, Sado T, Iwasaki W. 2018. MitoFish and MiFish Pipeline: A?Mitochondrial Genome Database of Fish?with an Analysis Pipeline for Environmental?DNA Metabarcoding. Mol Biol Evol [Internet].?[accessed 2022 Sep 30] 35(6): 1553-1555.?https://doi.org/10.1093/MOLBEV/MSY074 

  32. Smart AS, Tingley R, Weeks AR, van Rooyen AR,?McCarthy MA. 2015. Environmental DNA?sampling is more sensitive than a traditional?survey technique for detecting an aquatic?invader. Ecological Applications [Internet].?[accessed 2021 Jan 26] 25(7): 1944-1952.?https://doi.org/10.1890/14-1751.1 

  33. Song YK, Kim JH, Won SY, Park C. 2019.?Possibility in identifying species composition?of fish communities using the environmental?DNA metabarcoding technique-with the?preliminary results at urban. Journal of the?Korean Society of Environmental Restoration?Technology [Internet]. [accessed 2021 Feb 1]?22(6): 125-138. https://www.koreascience.or.kr/article/JAKO201911959029438.page?[Korean Literature] 

  34. Stewart KA. 2019. Understanding the effects of?biotic and abiotic factors on sources of?aquatic environmental DNA. Biodiversity?and Conservation 2019 28:5 28, 983-1001.?https://doi.org/10.1007/S10531-019-01709-8 

  35. Stoeckle BC, Beggel S, Kuehn R, Geist J. 2021.?Influence of stream characteristics and?population size on downstream transport?of freshwater mollusk environmental dna.?Freshwater Science 40: 191-201. https://doi.org/10.1086/713015/ASSET/IMAGES/LARGE/FG3.JPEG 

  36. Takahara T, Minamoto T, Yamanaka H, Doi H,?Kawabata Z. 2012. Estimation of Fish?Biomass Using Environmental DNA. PLoS?One 7, e35868. https://doi.org/10.1371/journal.pone.0035868 

  37. Thomsen PF, Kielgast J, Iversen LL, Wiuf C,?Rasmussen M, Gilbert MTP, Orlando L,?Willerslev E. 2012. Monitoring endangered?freshwater biodiversity using environmental?DNA. Mol Ecol [Internet]. [accessed 2021?Sep 30] 21(11): 2565-2573. https://doi.org/10.1111/J.1365-294X.2011.05418.X 

  38. Thomsen PF, Willerslev E. 2015. Environmental?DNA - An emerging tool in conservation?for monitoring past and present biodiversity.?Biol Conserv. 183: 4-18. https://doi.org/10.1016/j.biocon.2014.11.019 

  39. Ushio M, Fukuda H, Inoue T, Makoto K, Kishida?O, Sato K, Murata K, Nikaido M, Sado T,?Sato Y, et al. 2017. Environmental DNA?enables detection of terrestrial mammals?from forest pond water. Mol Ecol Resour?[Internet]. [accessed 2021 Feb 1] 17(6): e63-e75. https://doi.org/10.1111/1755-0998.12690 

  40. Ushio M, Murata K, Sado T, Nishiumi I, Takeshita?M, Iwasaki W, Miya M. 2018. Demonstration?of the potential of environmental DNA as?a tool for the detection of avian species.?Sci Rep [Internet]. [accessed 2021 Mar 28]?8(1): 1-10. https://doi.org/10.1038/s41598-018-22817-5 

  41. Valentini A, Taberlet P, Miaud C, Civade R,?Herder J, Thomsen PF, Bellemain E,?Besnard A, Coissac E, Boyer F, et al. 2016.?Next-generation monitoring of aquatic?biodiversity using environmental DNA?metabarcoding. Mol Ecol. 25(4): 929-942.?https://doi.org/10.1111/mec.13428 

  42. Vila M, Basnou C, Gollasch S, Josefsson M, Pergl?J, Scalera R. 2009. One Hundred of the?Most Invasive Alien Species in Europe.?Handbook of Alien Species in Europe?[Internet]. [accessed 2022 Oct 23]: 265-268.?https://doi.org/10.1007/978-1-4020-8280-1_12 

  43. Williams KE, Huyvaert KP, Vercauteren KC,?Davis AJ, Piaggio AJ. 2018. Detection and?persistence of environmental DNA from?an invasive, terrestrial mammal. Ecol Evol?[Internet]. [accessed 2021 Jan 23] 8(1): 688-695. https://doi.org/10.1002/ece3.3698 

  44. Yamamoto S, Masuda R, Sato Y, Sado T, Araki?H, Kondoh M, Minamoto T, Miya M.?2017. Environmental DNA metabarcoding?reveals local fish communities in a species-rich coastal sea. Scientific Reports 2017 7:1?[Internet]. [accessed 2022 Oct 5] 7(1): 1-12.?https://doi.org/10.1038/srep40368 

  45. Yates MC, Fraser DJ, Derry AM. 2019. Meta-analysis supports further refinement of?eDNA for monitoring aquatic species-specific abundance in nature. Environmental?DNA 1(1): 5-13. https://doi.org/10.1002/EDN3.7 

  46. Yeoungdeungpo cultural foundation. 2020. A Study?on the Basic Environment of Waterfront?Ecological Culture for the Development of?Waterfront Culture Revitalization Plan.?Seoul. [Korean Literature] 

  47. Yu Z, Ito SI, Wong MKS, Yoshizawa S, Inoue J,?Itoh S, Yukami R, Ishikawa K, Guo C,?Ijichi M, Hyodo S. 2022. Comparison of?species-specific qPCR and metabarcoding?methods to detect small pelagic fish?distribution from open ocean environmental?DNA. PLOS ONE, 17(9), e0273670. https://doi.org/10.1371/JOURNAL.PONE.0273670 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로