$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 식품첨가물 E171이 수생물에 미치는 독성 평가
Toxicity assessment of food additive(E171) in aquatic environments 원문보기

환경생물 = Korean journal of environmental biology, v.41 no.1, 2023년, pp.41 - 53  

윤학원 (안전성평가연구소 환경독성영향연구센터) ,  박준우 (안전성평가연구소 환경독성영향연구센터) ,  송인규 (안전성평가연구소 환경독성영향연구센터) ,  김강희 (안전성평가연구소 환경독성영향연구센터)

초록
AI-Helper 아이콘AI-Helper

식품첨가제로 주로 사용되는 이산화타이타늄 혼합물인 최근 E171은 체내 축적 및 유전 독성을 야기할 수 있다는 사실이 입증되어, 현재 규정 개정을 통해 E171의 식품첨가물 사용이 제한되고 있다. 그러나, 현재까지 E171의 인체 위해성 연구는 많이 진행된 반면, E171의 환경생물에 미치는 독성 연구는 상대적으로 부족한 실정이다. 따라서, 본 연구에서는 최근 우려되는 잠재적 독성물질인 E171의 환경적 위해성을 파악하기 위해 수생태계를 대표하는 물벼룩(Daphnia magna)과 제브라피쉬(Danio rerio)를 대상으로 나노물질의 특성을 반영한 최신 표준문건을 활용하여 기존 시험법의 한계점을 보완한 최적의 독성시험을 수행하였다. 독성시험 결과, 실제 환경적 현실성을 고려한 농도범위의 E171에 노출된 물벼룩에서 유영저해가 발생했지만, 어류의 경우 치사나 이상행동개체가 관찰되지 않았다. 그러나, 산화스트레스 관련 분자생물학적 분석 결과, E171이 물벼룩과 어류에 모두 산화스트레스를 유발하여 이의 방어작용으로 항산화효소의 활성이 증가하는 것을 확인하였다. 다만, 항산화효소 관련 유전자의 발현 여부는 생물종에 따라 차이가 존재하였다. 따라서, 본 연구 결과를 통해 E171은 실제 환경적 현실성을 고려한 농도에서 수생물에 산화스트레스를 유도할 수 있으나, 생물체의 종류에 따라 가시적인 독성의 정도와 산화스트레스 관련 유전자 발현에 차이가 존재함을 확인하였다. 본 연구는 기존 시험법의 한계점을 보안한 최적의 독성시험을 통해 E171이 수생물에 미치는 위험성을 확인하였으며, 이 결과는 E171의 환경 위해성 평가를 위한 과학적 자료로서 활용될 수 있을 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

E171, a mixture of titanium dioxide, has been widely used as a food additive due to its whitening effect and low toxicity. However, it has been proven that E171 is no longer safe for public health. So far, there are insufficient studies on the toxic effects of E171 on organisms especially using stan...

Keyword

참고문헌 (57)

  1. Aksakal E, D Ekinci and CT Supuran. 2021. Dietary inclusion of?royal jelly modulates gene expression and activity of oxidative stress enzymes in zebrafish. J. Enzym. Inhib. Med.?Chem. 36:885-894. https://doi.org/10.1080/14756366.2021.1900167 

  2. Al-Ammari A, L Zhang, J Yang, F Wei, C Chen and D Sun. 2021.?Toxicity assessment of synthesized titanium dioxide nanoparticles in fresh water algae Chlorella pyrenoidosa and a?zebrafish liver cell line. Ecotox. Environ. Safe. 207:112037?https://doi.org/10.1016/j.colsurfb.2021.112037 

  3. Baetke SC, T Lammers and F Kiessling. 2015. Applications of?nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol.?88:20150207. https://doi.org/10.1259/bjr.20150207 

  4. Barber DJ and IC Freestone. 1990. An investigation of the origin?of the colour of the Lycurgus Cup by analytical transmission?electron microscopy. Archaeometry 32:33-45. https://doi.org/10.1111/j.1475-4754.1990.tb01079.x 

  5. Bhattacharjya S, T Adhikari, A Sahu and AK Patra. 2021. Ecotoxicological effect of TiO 2 nano particles on different soil enzymes?and microbial community. Ecotoxicology 30:719-732. https://doi.org/10.1007/s10646-021-02398-2 

  6. Blaznik U, S Krusic, M Hribar, A Kusar, K Zmitek and I Pravst. 2021.?Use of food additive titanium dioxide (E171) before the introduction of regulatory restrictions due to concern for genotoxicity. Foods 10:1910. https://doi.org/10.3390/foods10081910 

  7. Brunet L, DY Lyon, EM Hotze, PJJ Alvarez and MR Wiesner. 2009. Comparative photoactivity and antibacterial properties?of C60 fullerenes and titanium dioxide nanoparticles. Environ.?Sci. Technol. 43:4355-4360. https://doi.org/10.1021/es803093t 

  8. Chavan S, V Sarangdhar and V Nadanathangam. 2020. Toxicological effects of TiO 2 nanoparticles on plant growth promoting?soil bacteria. Emerg. Contam. 6:87-92. https://doi.org/10.1016/j.emcon.2020.01.003 

  9. Dudefoi W, K Moniz, E Allen-Vercoe, MH Ropers and VK Walker. 2017. Impact of food grade and nano-TiO 2 particles on a?human intestinal community. Food Chem. Toxicol. 106:242-249. https://doi.org/10.1016/j.fct.2017.05.050 

  10. ECHA. 2017. Guidance on Information Requirements and Chemical Safety Assessment Appendix R7-1 for Nanomaterials?Applicable to Chapter R7b Endpoint Specific Guidance Version 2.0. European Chemicals Agency. Helsinki, Finland.?https://doi.org/10.2823/080237 

  11. EFSA. 2021. Safety Assessment of Titanium Dioxide (E171) as a?Food Additive. EFSA J. 19:130. https://doi.org/10.2903/j.efsa.2021.6585 

  12. EPA, US. 2016a. Ecological Effects Test Guidelines; OCSPP 850.1010 Aquatic Invertebrate Acute Toxicity Test, Freshwater?Daphnids. 

  13. EPA, US. 2016b. Ecological Effects Test Guidelines; OCSPP 850.1075 Freshwater and Saltwater Fish Acute Toxicity Test. 

  14. Federici G, BJ Shaw and RD Handy. 2007. Toxicity of titanium dioxide nanoparticles to rainbow trout(Oncorhynchus mykiss):?Gill injury, oxidative stress, and other physiological effects.?Aquat. Toxicol. 84:415-430. https://doi.org/10.1016/j.aquatox.2007.07.009 

  15. Fiordaliso F, P Bigini, M Salmona and L Diomede. 2022. Toxicological impact of titanium dioxide nanoparticles and food-grade?titanium dioxide (E171) on human and environmental health.?Environ. Sci. Nano 9:1199-1211. https://doi.org/10.1039/d1en00833a 

  16. Garcia-Garcia S, S Wold and M Jonsson. 2009. Effects of temperature on the stability of colloidal montmorillonite particles?at different pH and ionic strength. Appl. Clay Sci. 43:1. https://doi.org/10.1016/j.clay.2008.07.011 

  17. Grand View Research. 2021. Market Analyiss Report: Titanium Dioxide Market Size, Share & Trends Analysis Report by Grade?(Anatase, Rutile), by Production Process (Sulfate, Chloride), by?Application (Paints & Coatings, Plastics) by Region, and Segment Forecasts, 2021-2028. Grand View Research. https://www.grandviewresearch.com/industry-analysis/titaniumdioxide-industry/toc 

  18. Greenbaum D, C Colangelo, K Williams and M Gerstein. 2003.?Comparing protein abundance and mRNA expression levels?on a genomic scale. Genome Biol. 4:1-8. 

  19. Griffitt RJ, K Hyndman, ND Denslow and DS Barber. 2009. Comparison of molecular and histological changes in zebrafish?gills exposed to metallic nanoparticles. Toxicol. Sci. 107:404-415. https://doi.org/10.1093/toxsci/kfn256 

  20. Han HY, MJ Yang, C Yoon, GH Lee, DW Kim, TW Kim, M Kwak,?MB Heo, TG Lee, S Kim, JH Oh, HJ Lim, I Oh, S Yoon and?EJ Park. 2021. Toxicity of orally administered food-grade?titanium dioxide nanoparticles. J. Appl. Toxicol. 41:1127-1147.?https://doi.org/10.1002/jat.4099 

  21. Hou J, L Wang, C Wang, S Zhang, H Liu, S Li and X Wang. 2019. Toxicity and mechanisms of action of titanium dioxide?nanoparticles in living organisms. J. Environ. Sci. (China)?75:40-53. https://doi.org/10.1016/j.jes.2018.06.010 

  22. Hong NH, YJ Jung and JW Park. 2016. Ecotoxicity assessment?of silver nanomaterials with different physicochemical characteristics in diverse aquatic organisms. Korean J. Environ. Biol.?34:183-192. https://doi.org/10.11626/KJEB.2016.34.3.183 

  23. Hund-Rinke K, C Nickel and D Kuhnel. 2017. Considerations?About the Relationship of Nanomaterial's Physical-Chemical?Properties and Aquatic Toxicity for the Purpose of Grouping.?Umweltbundesamt. UBA TEXTE. 102:2017. 

  24. Joudeh N and D Linke. 2022. Nanoparticle classification, physicochemical properties, characterization, and applications:?a comprehensive review for biologists. J. Nanobiotechnol.?20:1-29. https://doi.org/10.1186/s12951-022-01477-8 

  25. Lee SH and BG Lee. 2021. Bioaccumulation of Ag and Zn in?earthworms (Eisenia fetida) from soil contaminated with Ag?and Zn nanoparticles using a radiotracer method. Korean?J. Environ. Biol. 39:550-558. https://doi.org/10.11626/KJEB.2021.39.4.550 

  26. Lee SW, SM Kim and J Choi. 2009. Genotoxicity and ecotoxicity?assays using the freshwater crustacean Daphnia magna?and the larva of the aquatic midge Chironomus riparius to?screen the ecological risks of nanoparticle exposure. Environ. Toxicol. Pharmacol. 28:86-91. https://doi.org/10.1016/j.etap.2009.03.001 

  27. Lu Y, H Zhang, H Wang, N Ma, T Sun and B Cui. 2021. Humic acid?mediated toxicity of faceted TiO 2 nanocrystals to Daphnia?magna. J. Hazard. Mater. 416:126112. https://doi.org/10.1016/j.jhazmat.2021.126112 

  28. Luo M, X Qi, T Ren, Y Huang, AA Keller, H Wang, B Wu, H Jin and?F Li. 2017. Heteroaggregation of CeO 2 and TiO 2 engineered?nanoparticles in the aqueous phase: Application of turbiscan?stability index and fluorescence excitation-emission matrix?(EEM) spectra. Colloid Surf. A-Physicochem. Eng. Asp.?533:9-19. https://doi.org/10.1016/j.colsurfa.2017.08.014 

  29. Ma H, A Brennan and SA Diamond. 2012. Photocatalytic reactive?oxygen species production and phototoxicity of titanium?dioxide nanoparticles are dependent on the solar ultraviolet?radiation spectrum. Environ. Toxicol. Chem. 31:2099-2107.?https://doi.org/10.1002/etc.1916 

  30. Manier N, A Bado-Nilles, P Delalain, O Aguerre-Chariol and?P Pandard. 2013. Ecotoxicity of non-aged and aged CeO 2 ?nanomaterials towards freshwater microalgae. Environ. Pollut. 180:63-70. https://doi.org/10.1016/j.envpol.2013.04.040 

  31. Musial J, R Krakowiak, DT Mlynarczyk, T Goslinski and BJ?Stanisz. 2020. Titanium dioxide nanoparticles in food and personal care products - what do we know about their safety??Nanomaterials 10:1-23. https://doi.org/10.3390/nano10061110 

  32. Nguyen TMP, P Lemaitre, M Kato, K Hirota, K Tsukagoshi, H?Yamada, A Terabe, H Mizutani and S Kanehira. 2021. Preparation of anatase titanium dioxide nanoparticle powders?submitting reactive oxygen species (ROS) under dark conditions. Mater. Sci. Appl. 12:89-100. https://doi.org/10.4236/msa.2021.122006 

  33. OECD GD No. 317. 2021. Guidance Document on Aquatic and?Sediment Toxicological Testing of Nanomaterials. Organisation for Economic Co-operation and Development. 

  34. OECD GD No. 318. 2020. Guidance Document for the Testing?of Dissolution and Dispersion Stability of Nanomaterials and?the Use of the Data for Further Environmental Testing and?Assessment Strategies. Organisation for Economic Co-operation and Development. 

  35. OECD TG No. 202. 2004. Daphnia sp. Acute Immobilization Test,?OECD Guidelines for the Testing of Chemicals. Organisation?for Economic Co-operation and Development. https://doi.org/10.1787/9789264069947-en 

  36. OECD TG No. 203. 2019. Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals. Organisation for Economic?Co-operation and Development. https://doi.org/10.1787/9789264069961-en 

  37. Ong WJ, N Zheng and M Antonietti. 2021. Advanced nanomaterials for energy conversion and storage: Current status and?future opportunities. Nanoscale 13:9904-9907. https://doi.org/10.1039/d1nr90103f 

  38. Ortelli S, A Costa, I Zanoni, M Blosi, O Geiss, I Bianchi, D Mehn, F?Fumagalli, G Ceccone, G Guerrini and L Calzolai. 2021. TiO 2 @?BSA nano-composites investigated through orthogonal?multi-techniques characterization platform. Colloid Surf. B-Biointerfaces 207:112037. https://doi.org/10.1016/j.colsurfb.2021.112037 

  39. Pakrashi S, S Dalai, TC Prathna, S Trivedi, R Myneni, AM Raichur,?N Chandrasekaran and A Mukherjee. 2013. Cytotoxicity of?aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations. Aquat. Toxicol. 132:34-45. https://doi.org/10.1016/j.aquatox.2013.01.018 

  40. Praetorius A, A Gundlach-Graham, E Goldberg, W Fabienke, J?Navratilova, A Gondikas, R Kaegi, D Gunther, T Hofmann and?VDK Frank. 2017. Single-particle multi-element fingerprinting?(spMEF) using inductively-coupled plasma time-of-flight?mass spectrometry (ICP-TOFMS) to identify engineered?nanoparticles against the elevated natural background in soils.?Environ. Sci. Nano 4:307-314. https://doi.org/10.1039/c6en00455e 

  41. Proquin H, C Rodriguez-Ibarra, CGJ Moonen, IM Urrutia Ortega,?JJ Briede, TM de Kok, H van Loveren and YI Chirino. 2017.?Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized?fractions. Mutagenesis 32:139-149. https://doi.org/10.1093/MUTAGE/GEW051 

  42. Richter V, A Potthoff, W Pompe, M Gelinsky, H Ikonomidou, S?Bastian, K Schirmer, S Scholz and J Hofinger. 2008. Evaluation of health risks of nano- and microparticles. Powder?Metall. 51:8-9. https://doi.org/10.1179/174329008X286640 

  43. Schneider J, M Matsuoka, M Takeuchi, J Zhang, Y Horiuchi, M?Anpo and DW Bahnemann. 2014. Underst-anding TiO 2 ?photocatalysis mechanisms and materials. Chem. Rev.?114:9919-9986. https://doi.org/10.1021/cr5001892 

  44. Skocaj M, M Filipic, J Petkovic and S Novak. 2011. Titanium dioxide?in our everyday life; Is it safe? Radiol. Oncol. 45:227-247.?https://doi.org/10.2478/v10019-011-0037-0 

  45. Su S, W Wu, J Gao, J Lu and C Fan. 2012. Nanomaterials-based?sensors for applications in environmental monitoring. J.?Mater. Chem. 22:18101-18110. https://doi.org/10.1039/C2JM33284A 

  46. Tang T, Z Zhang and X Zhu. 2019. Toxic effects of TiO 2 NPs on?Zebrafish. Int. J. Environ. Res. Public Health 16:523. https://doi.org/10.3390/ijerph16040523 

  47. Taurozzi JS, VA Hackley and M Wiesner. 2012a. Preparation of?Nanoparticle Dispersions from Powdered Material Using?Ultrasonic Disruption (Version 1.1). National Institute of Standards and Technology Special Publication. 1200-2. https://doi.org/10.6028/NIST.SP.1200-2 

  48. Taurozzi JS, VA Hackley and M Wiesner. 2012b. Preparation of a?Nanoscale TiO 2 Aqueous Dispersion for Toxicological or Environmental Testing(Version 1.2). National Institute of Standards?and Technology Special. Publication. 1200-3. https://doi.org/10.6028/NIST.SP.1200-3 

  49. Taurozzi JS, VA Hackley and M Wiesner. 2012c. Preparation of?Nanoscale TiO 2 Dispersions in Biological Test Media for Toxicological Assessment(Version 1.1). National Institute of Standards and Technology Specical. Publication. 1200-4. https://doi.org/10.6028/NIST.SP.1200-4 

  50. Valavanidis A, T Vlahogianni, M Dassenakis and M Scoullos. 2006. Molecular biomarkers of oxidative stress in aquatic?organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 64:178-189. https://doi.org/10.1016/j.ecoenv.2005.03.013 

  51. Venator. 2013. Product data sheet of HOMBITAN ® FG. www.venatorcorp.com. 

  52. Xiong D, T Fang, L Yu, X Sima and W Zhu. 2011. Effects of nanoscale TiO 2 , ZnO and their bulk counterparts on zebrafish:?Acute toxicity, oxidative stress and oxidative damage. Sci. Total?Environ. 409:1444-1452. https://doi.org/10.1016/j.scitotenv.2011.01.015 

  53. Yoo JW, JS Cha, HR Kim, JW Pyo and YM Lee. 2019. Modulation of antioxidant defense system in the brackish water flea?Diaphanosoma celebensis exposed to bisphenol A. Korean J.?Environ. Biol. 37:73-81. https://doi.org/10.11626/KJEB.2019.37.1.072 

  54. Yuan Y, Y Gao, L Mao and J Zhao. 2008. Optimisation of conditions for the preparation of β-carotene nanoemulsions using?response surface methodology. Food Chem. 107:1300-1306. https://doi.org/10.1016/j.foo-dchem.2007.09.015 

  55. Zhao X, S Wang, Y Wu, H You and L Lv. 2013. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative?stress and DNA damage in embryo-larval zebrafish. Aquat.?Toxicol. 136:49-59. https://doi.org/10.1016/j.aquatox.2013.03.019 

  56. Zhao Y, Z Wang, D Li, W Feng, X Bian and J Xu. 2019. Two PBDEs?exposure inducing feeding depression and disorder of digestive and antioxidative system of Daphnia magna. Ecotoxicol.?Environ. Saf. 176:279-287. https://doi.org/10.1016/j.ecoenv.2019.03.116 

  57. Zhu X, L Zhu, Y Chen and S Tian. 2009. Acute toxicities of six?manufactured nanomaterial suspensions to Daphnia magna.?J. Nanopart. Res. 11:67-75. https://doi.org/10.1007/s11051-008-9426-8 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로