$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

지하공간 화재에 따른 콘크리트 손상과 내화재 적용에 대한 연구
Research on Concrete Damage and Fireproofing Applications in Underground Fires 원문보기

터널과 지하공간: 한국암반공학회지 = Tunnel and underground space, v.33 no.3, 2023년, pp.169 - 188  

최순욱 (한국건설기술연구원 지반연구본부) ,  장수호 (한국건설기술연구원 지반연구본부) ,  강태호 (한국건설기술연구원 지반연구본부) ,  이철호 (한국건설기술연구원 지반연구본부)

초록
AI-Helper 아이콘AI-Helper

터널에서의 화재는 지상 화재에 비해 온도상승과 최대온도가 더 높게 나타난다. 이러한 이유로 네덜란드, 독일 등 여러 나라에서는 터널에서 사용하는 별도의 화재 시간이력곡선을 제시하였다. 터널 내 화재는 단면손실과 그 배면의 역학적 특성저하와 같은 터널 라이닝의 손상을 발생시킨다. 본 연구에서는 구조물의 화재안정성 설계 개념과 스폴링에 의한 단면손실, 터널 라이닝 재료의 물리화학적 및 역학적 특성 변화, 구조물 안전을 위한 내화재, 그리고 화재손상 예측모델에 대해 살펴보았다. 화재에 대한 구조물의 안정성을 확보하기 위해서는 설계 단계에서 구조물의 종류와 화재원인을 파악하고 예상되는 단면손실과 손상범위를 확인하여 내화재를 통해 이러한 손상에 대비하는 작업이 요구된다. 본 연구에서는 이러한 일련의 작업을 수행하는데 참고할 수 있는 사항들을 정리하고 이에 대한 의견을 제시하였다.

Abstract AI-Helper 아이콘AI-Helper

Fires in tunnels are characterized by higher temperature rise and higher maximum temperatures compared to ground fires. For this reason, countries such as the Netherlands and Germany have developed separate temperature-time curves for use in tunnel fires. Fires in tunnels cause damage to the tunnel ...

주제어

표/그림 (13)

참고문헌 (52)

  1. ACI Committee 318, 2019, Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19); American Concrete Institute: Farmington Hills, MI, USA.? 

  2. Alarcon-Ruiz, L., Platret, G., Massieu, E., and Ehrlacher, A., 2005, The use of thermal analysis in assessing the effect of?temperature on a cement paste, Cement and Concrete Research, 35(3), 609-613.? 

  3. Anton, O. and Wu, X., 2004, Runehamar tunnel fire tests-Upton: Fire protection, SP RAPPORT-STATENS PROVNINGSANSTALT, pp. 145-154.? 

  4. Beard, A. and Carvel, R., 2005, The Handbook of Tunnel Fire Safety, Thomas Telford Publishing, London, pp. 113-115.? 

  5. Borst, R. D., 1997, Some recent development in computational modelling of concrete fracture, International Journal of Fracture, 86,?5-36.? 

  6. Bostrom, L. and Larsen, C. K., 2006, Concrete for Tunnel Linings Exposed to Severe Fire Exposure, Fire Technology, 42, 351-362.? 

  7. Buchanan, A.H., 2002, Structural Design for Fire Safety, WILEY.? 

  8. Chang, S.H., Choi, S.W., and Lee, J., 2016, Determination of the combined heat transfer coefficient to simulate the fire-induced?damage of a concrete tunnel lining under a severe fire condition, Tunnelling and Underground Space Technology, 54, 1-12.? 

  9. Chang, S.H., Choi, S.W., Kwon, J.W., and Bae, G.J., 2006, Evaluation of fire-induced damage to structural members in tunnels,?KSCE Journal of Civil and Environmental Engineering Research, 26(3C), 219-228.? 

  10. Chang, S.H., Choi, S.W., Kwon, J.W., Kim, S.H., and Bae, G.J., 2007, Alteration of mechanical properties of tunnel structural?members after a tunnel fire accident, J. of Korean Tunn Undergr Sp. Assoc., 9(2), 157-169.? 

  11. Chang, S.H., Choi, S.W., Bae, G.J., and Ahn, S.Y., 2008, A new element elimination model to predict fire-induced damage on an?underground structure, J. of Korean Tunn Undergr Sp. Assoc., 10(4), 1-15.? 

  12. Choi, S.W. and Kang, T.S., 2021, Evaluation of Segment Lining Fire Resistance Based on PP Fiber Dosage and Air Contents,?Tunnel and Underground Space, 31(6), 469-479.? 

  13. Choi, S.W., Chang, S.H., Kim, H.Y., and Jo, B.H., 2011, Experimental evaluation of fire protection measures for the segment joint?of an immersed tunnel, J. of Korean Tunn Undergr Sp. Assoc., 13(3), 177-197.? 

  14. Choi, S.W., Chang, S.H., Lee, G.P., and Bae, G.J., 2005, Fire-induced Damage to Shield TBM Concrete Segment, Journal of the?Korean Geotechnical Society, 21(5), 171-177.? 

  15. Choi, S.W., Kang, T.H., Lee, C., Kim, S.K., Kim, T.K., and Chang, S.H., 2021b, Fire resistance assessment in construction joint of?precast fireproof duct slab, J. of Korean Tunn Undergr Sp. Assoc., 23(5), 359-370.? 

  16. Choi, S.W., Lee, J., and Chang, S.H., 2013, A holistic numerical approach to simulating the thermal and mechanical behaviour of a?tunnel lining subject to fire, Tunnelling and Underground Space Technology, 35, 122-134.? 

  17. Choi, S.W., Chang, S.H., Kim, H.Y., and Jo, B.H., 2010, Assessment of Structural fire Resistance of a Fire-Proofed Immersed?Tunnel Under Tunnel fire Scenarios, J. of Korean Tunn Undergr Sp. Assoc., 12(6), 429-441.? 

  18. Choi, S.W., Kang, T.H., Lee, C., Kim, H.S., Ahn, B., and Chang, S.H., 2021a, Fire resistance assessment of segment lining with PP?fiber amount, J. of Korean Tunn Undergr Sp. Assoc., 23(5), 303-314.? 

  19. Clement, F. and Focaracci, A., 2011, Fire Protection in Tunnels: Requirements, Solutions and Case histories, Proceedings of?ITA-AITES 2011, Helsinki, Finland.? 

  20. Corsi, F., 2008, Damage to concrete in tunnels after fire exposure-Evaluation report, UPTUN Workpackage 4 Fire effects and?tunnel performance: system structural response M43, pp. 20-37.? 

  21. Cotterell, B., 2002, The past, present, and future of fracture mechanics, Engineering Fracture Mechanics, 69, 533-553.? 

  22. Davie, C.T., Zhang, H., Pearce, C.J., and BICANIC, N., 2008, Computational modelling of concrete exposed to fire: the effects of?coupled hygrothermal-mechanical behavior on the development of spalling in concrete structures, Proceedings of the Fifth?International Conference, Structures in Fire, Nanyang Technological University, Singapore, 28-30th, May, 2008, pp 357-368.? 

  23. Dekker, J., 1986, Tunnel Protection Fire Test Procedure, IBBC, TNO report.? 

  24. Dorgarten, H.W., Balthaus, H., Dahl, J., and Billig, B., 2004, Fire-resistant Tunnel Construction; Results of Fire Behaviour Tests?and Criteria of Application, Proc. of ITA-AITES 2004, No. B06.? 

  25. Eurocode 2, 2004, Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design, EN 1992-1-2(2004).? 

  26. Gawin, D., Pesavento, F., and Schrefler, B.A., 2003, Modelling of hygrothermal behaviour of concrete at high temperature with?thermochemical and mechanical degradation, Computer Methods in Applied Mechanics and Engineering, 192(13-14),?1731-1771.? 

  27. GK Fixed Link Corporation, 2006, Structural analysis report(transverse analysis part of immersed tunnel element E12~E14).? 

  28. Hertz, K.D., 2003, Limits of spalling of fire-exposed concrete, Fire Safety Journal, 38(2), 103-116. 

  29. ITA, 2004, Guidelines for structural fire resistance for road tunnels, Working Group No. 6 Maintenance and Repair, pp. 2-4~6.? 

  30. ITA, 2017, Structural Fire Protection For Road Tunnels, Working Group No. 6 Maintenance and Repair, p. 10.? 

  31. JCI, 2002, Report of the Committee for the Investigation of Fire Safety of Concrete Structures, Japan Concrete Institute, pp. 94-112.? 

  32. Kalifa, P., Chene, G., and Galle, C., 2001, High-temperature behaviour of HPC with polypropylene fibres: From spalling to?microstructure, Cement and Concrete Research, 31(10), 1487-1499.? 

  33. Khoury, G.A., 2000, Effect of fire on concrete and concrete structures, Prog. Struct. Engng Mater., 429-447.? 

  34. Khoury, G.A., 2008, Passive fire protection of concrete structures, Proceedings of the Institution of Civil Engineers-Structures and?Buildings, 161(3), 135-145.? 

  35. Khoury, G.A., Majorana, C.E., Pesavento, F., and Schrefler, B.A., 2002, Modelling of heated concrete, Magazine of Concrete?Research, 54(2), 77-101.? 

  36. Kodur, V.K.R. and Dwaikat, M., 2008, A numerical model for predicting the fire resistance of reinforced concrete beams, Cement?and Concrete Composites, 30, 431-443.? 

  37. Lottman, B.B.G., Koenders, E.A.B., Blom, C.B.M., and Walraven, J.C., 2013, Spalling of concrete due to fire exposure: A coupled?fracture mechanics and pore pressure approach, MATEC Web of Conference 6, Doi:10.1051/matecconf/20130605002.? 

  38. Mazzucco, G. and Xotta, G., 2016, Fire spalling prevention via polypropylene fibres: a meso-and macroscale approach, Modelling?and Simulation in Engineering, 2016(8639545), 11.? 

  39. Melbye, T. and Dimmock, R., 2006, Thermal Barriers and Fibre Concrete Roles in the Passive Fire Protection of Tunnels, In?Shotcrete for Underground Support X, ASCE 2006, pp. 285-297.? 

  40. Ono, K. and Otsuka, T., 2006, Fire Design Requirement for Various Tunnel, Proc. of 32nd ITA - World Tunnel Congress, Seoul,?Keynote lecture.? 

  41. Peng, G.F., 2000, Evaluation of fire damage to high-performance concrete, Ph.D. Dissertation, Hong Kong Polytechnic University,?pp. 26-48.? 

  42. Pesavento, F., Schrefler, B.A., and Gawin, D., 2007, Modelling of coupled multifield problems in concrete by means of porous?media mechanics, Fracture Mechanics of Conference and Concrete Structures-New Trends in Fracture Mechanics of?Concrete-Carpinteri, et al. (eds), 2007 Taylor&Francis Group, London, pp. 485-493.? 

  43. Phan, L.T. and Carino, N.J., 2003, Code Provisions for High Strength Concrete Strength-Temperature Relationship at Elevated?Temperatures, Materials and Structures, 36(256), 91-98.? 

  44. Phan, L.T., 1996, Fire Performance of High-Strength Concrete: A Report of the State-of-the-Art, NISTIR 5934, National Institute?of Standards and Technology, pp. 54-56.? 

  45. Phan, M.T., Meftah, F., Rigobert, S., Autuori, P., Lenglet, C., and Dalpont, S., 2011, A finite element modeling of thermo-hydro-mechanical behavior and numerical simulation of progressing spalling front, 2nd International RILEM?Workshop on Concrete Spalling due to Fire Exposure, 5-7th, Delft, Netherlands, pp. 221-226.? 

  46. PIARC, 1999, Fire and Smoke Control in Road Tunnels, PIARC Committee on Road Tunnels.? 

  47. Savov, K., Lacker, R., and Mang, H.A., 2005, Stability assessment of shallow tunnels subjected to fire load, Fire Saf. J., 40,?745-763.? 

  48. Schneider, U., 1988, Concrete at high temperatures-a general review, Fire Safety Journal, 13(1), 55-68.? 

  49. Tantawy, M.A., 2017, Effect of high temperatures on the microstructure of cement paste, Journal of Materials Science and?Chemical Engineering, 5(11), 33.? 

  50. Wang, P., Jiang, M., Zhou, J., Wang, B., Feng, J., Chen, H., Fan, H., and Jin, F., 2018, Spalling in concrete arches subjected to?shock wave and CFRP strengthening effect, Tunnelling and Underground Space Technology, 74, 10-19.? 

  51. Yasuda, F., Ono, K., and Otsuka, T., 2004, Fire Protection for TBM Shield Tunnel Lining, Proc. of ITA-AITES 2004, B09.? 

  52. Yermak, N., Pliya, P., Beaucour, A.L., Simon, A., and Noumowe, A., 2017, Influence of steel and/or polypropylene fibres on the?behaviour of concrete at high temperature: Spalling, transfer and mechanical properties, Construction and Building?Materials, 132, 240-250.? 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로