$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

기판과 무연솔더 계면에 전사된 그래핀 층의 금속간화합물 성장 지연 효과
Retarding Effect of Transferred Graphene Layers on Intermetallic Compound Growth at The Interface between A Substrate and Pb-free Solder 원문보기

마이크로전자 및 패키징 학회지 = Journal of the Microelectronics and Packaging Society, v.30 no.3, 2023년, pp.64 - 72  

고용호 (한국생산기술연구원 접합적층연구부문) ,  유동열 (한국생산기술연구원 접합적층연구부문)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 Cu 기판 위에 그래핀(graphene)을 전사하고 Cu 기판 위에 Sn-3.0Ag-0.5Cu 무연(Pb-free) 솔더페이스트를 도포한 후에, 리플로우 솔더링 공정 및 다양한 온도(125, 150, 175 ℃)에서 등온 시효 1000 h 동안 Cu 기판과 솔더 계면에서 발생하는 금속간화합물(intermetallic compound, IMC)의 형성과 성장 거동에 전사된 graphene의 미치는 영향에 대하여 보고하였다. Graphene이 계면에 존재하는 경우 graphene이 존재하지 않은 경우와 비교할 때, 솔더링 공정 및 시효 동안 형성되어 성장하는 Cu6Sn5과 Cu3Sn IMC의 두께가 감소하는 것을 확인 할 수 있었다. 또한, 계면에 존재하는 전사된 graphene 층(layer)은 시효 온도와 시간에 따라 IMC들의 성장 거동과 관계된 Cu6Sn5과 Cu3Sn IMC의 성장 속도 상수와 성장 속도 상수 제곱 값들도 크게 감소시킬 수 있는 것으로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

In this study, after transferring graphene on a Cu substrate and printing a Sn-3.0Ag-0.5Cu Pb-free solder paste on the Cu substrate, effects of the transferred graphene on formations and growths of intermetallic compound (IMC) at the interface between the Cu substrate and the solder were reported du...

주제어

표/그림 (10)

참고문헌 (53)

  1. H. Ma and J. C. Suhling, "A review of mechanical properties?of lead-free solders for electronic packaging", J. Mater. Sci.,?44(5), 1141 (2009). 

  2. J. Glazer, "Microstructure and mechanical properties of Pb-free?solder alloys for low-cost electronic assembly: a review",?J. Electron. Mater., 23(8), 693 (1994). 

  3. X. Ma, F. Wang, Y. Qian, and F. Yoshida, "Development of?Cu-Sn intermetallic compound at Pb-free solder/Cu joint?interface", Mater. Lett., 57(22), 3361 (2003). 

  4. K. Tu and R. Thompson, "Kinetics of interfacial reaction in?bimetallic Cu-Sn thin films", Acta Metall., 30(5), 947 (1982). 

  5. L. Xu, J. H. Pang, and F. Che, "Impact of thermal cycling on?Sn-Ag-Cu solder joints and board-level drop reliability", J.?Electron. Mater., 37(6), 880 (2008). 

  6. R. E. Pratt, E. I. Stromswold, and D. J. Quesnel, "Effect of?solid-state intermetallic growth on the fracture toughness of?Cu/63Sn-37Pb solder joints", IEEE Trans. Compon. Packag.?Manuf. Technol., 19(1), 134 (1996). 

  7. F. Song and S. R. Lee, "Investigation of IMC thickness effect?on the lead-free solder ball attachment strength: comparison?between ball shear test and cold bump pull test results", Proc.?56th Electronic Components and Technology Conference?(ECTC), San Diego, CA, USA, 1196, IEEE (2006). 

  8. C.-S. Chung and H.-K. Kim, "Mechanical Behavior of Sn-3.0Ag-0.5Cu/Cu Solder Joints After Isothermal Aging", J.?Electron. Mater., 45(1), 125 (2016). 

  9. J.-W. Yoon, B.-I. Noh, and S.-B. Jung, "Comparison of Interfacial?Stability of Pb-Free Solders (Sn-3.5 Ag, Sn-3.5Ag-0.7Cu, and Sn-0.7Cu) on ENIG-Plated Cu During Aging",?IEEE Trans. Compon. Packag. Manuf. Technol., 33(1), 64 (2010). 

  10. C.-L. Yeh and Y.-S. Lai, "Effects of solder alloy constitutive?relationships on impact force responses of package-level solder?joints under ball impact test", J. Electron. Mater., 35(10), 1892 (2006). 

  11. I. Anderson, J. Foley, B. A. Cook, J. Harringa, R. Terpstra,?and O. Unal, "Alloying effects in near-eutectic Sn-Ag-Cu solder?alloys for improved microstructural stability", J. Electron.?Mater., 30(9), 1050 (2001). 

  12. Y. Li, K.-S. Moon, and C. Wong, "Electronics without lead",?Science, 308(5727), 1419 (2005). 

  13. K. Kanlayasiri and K. Sukpimai, "Effects of indium on the?intermetallic layer between low-Ag SAC0307-xIn lead-free?solders and Cu substrate", J. Alloys Compd., 668, 169 (2016). 

  14. T. Laurila, V. Vuorinen, and J. Kivilahti, "Interfacial reactions?between lead-free solders and common base materials",?Mater. Sci. Eng. R Rep., 49(1), 1 (2005). 

  15. A. Sharif, Y. Chan, and R. A. Islam, "Effect of volume in?interfacial reaction between eutectic Sn-Pb solder and Cu?metallization in microelectronic packaging", Mater. Sci. Eng. B., 106(2), 120 (2004). 

  16. J. Zhao, L. Qi, X.-M. Wang, and L. Wang, "Influence of Bi?on microstructures evolution and mechanical properties in?Sn-Ag-Cu lead-free solder", J. Alloys Compd., 375(1), 196 (2004). 

  17. L. Xu, J. H. Pang, K. H. Prakash, and T. Low, "Isothermal?and thermal cycling aging on IMC growth rate in lead-free?and lead-based solder interface", IEEE Trans. Compon.?Packag. Manuf. Technol., 28(3), 408 (2005). 

  18. W. Peng, E. Monlevade, and M. E. Marques, "Effect of thermal?aging on the interfacial structure of SnAgCu solder joints?on Cu", Microelectron. Reliab., 47(12), 2161 (2007). 

  19. M. G. Cho, S. K. Kang, D.-Y. Shih, and H. M. Lee, "Effects?of minor additions of Zn on interfacial reactions of Sn-Ag-Cu and Sn-Cu solders with various Cu substrates during thermal?aging", J. Electron. Mater., 36(11), 1501 (2007). 

  20. C. C. Lee, P. J. Wang, and J. S. Kim, "Are intermetallics in?solder joints really brittle?", Proc. 57th Electronic Components?and Technology Conference (ECTC), Sparks, NV, USA, 648, IEEE (2007). 

  21. L. Gao, S. Xue, L. Zhang, Z. Sheng, F. Ji, W. Dai, S.-L. Yu,?and G. Zeng, "Effect of alloying elements on properties and?microstructures of SnAgCu solders", Microelectron. Eng., 87(11), 2025 (2010). 

  22. C. Wu, D. Yu, C. Law, and L. Wang, "Properties of lead-free?solder alloys with rare earth element additions", Mater. Sci.?Eng. R Rep., 44(1), 1 (2004). 

  23. Y. Wang, X. Zhao, X. Xie, Y. Gu, and Y. Liu, "Effects of?nano-SiO 2 particles addition on the microstructure, wettability,?joint shear force and the interfacial IMC growth of?Sn3.0Ag0.5Cu solder", J. Mater. Sci. Mater. Electron., 26(12), 9387 (2015). 

  24. Y. Tang, G. Li, and Y. Pan, "Influence of TiO 2 nanoparticles?on IMC growth in Sn-3.0Ag-0.5Cu-xTiO 2 solder joints in?reflow process", J. Alloys Compd., 554, 195 (2013). 

  25. L. Tsao, "Suppressing effect of 0.5 wt.% nano-TiO 2 addition?into Sn-3.5Ag-0.5Cu solder alloy on the intermetallic growth?with Cu substrate during isothermal aging", J. Alloys?Compd., 509(33), 8441 (2011). 

  26. S. Chellvarajoo and M. Abdullah, "Microstructure and mechanical?properties of Pb-free Sn-3.0Ag-0.5Cu solder pastes?added with NiO nanoparticles after reflow soldering process",?Mater. Des., 90, 499 (2016). 

  27. A. K. Gain, T. Fouzder, Y. C. Chan, and W. K. Yung, "Microstructure,?kinetic analysis and hardness of Sn-Ag-Cu-1wt%?nano-ZrO 2 composite solder on OSP-Cu pads", J. Alloys?Compd., 509(7), 3319 (2011). 

  28. Y. K. Jee, Y. H. Ko, and J. Yu, "Effect of Zn on the intermetallics?formation and reliability of Sn-3.5Ag solder on a Cu?pad", J. Mater. Res., 22(07), 1879 (2007). 

  29. S. K. Kang, D. Leonard, D.-Y. Shih, L. Gignac, D. Henderson,?S. Cho, and J. Yu, "Interfacial reactions of Sn-Ag-Cu solders?modified by minor Zn alloying addition", J. Electron.?Mater., 35(3), 479 (2006). 

  30. L. Zhang, S. B. Xue, G. Zeng, L. L. Gao, and H. Ye, "Interface?reaction between SnAgCu/SnAgCuCe solders and Cu?substrate subjected to thermal cycling and isothermal aging",?J. Alloys Compd., 510(1), 38 (2012). 

  31. M. Rizvi, Y. Chan, C. Bailey, H. Lu, and M. Islam, "Effect?of adding 1wt% Bi into the Sn-2.8Ag-0.5Cu solder alloy on?the intermetallic formations with Cu-substrate during soldering?and isothermal aging", J. Alloys Compd., 407(1), 208 (2006). 

  32. S. Nai, J. Wei, and M. Gupta, "Interfacial intermetallic growth?and shear strength of lead-free composite solder joints", J.?Alloys Compd., 473(1), 100 (2009). 

  33. X. Hu, Y. Chan, K. Zhang, and K. Yung, "Effect of graphene?doping on microstructural and mechanical properties of Sn-8Zn-3Bi solder joints together with electromigration analysis",?J. Alloys Compd., 580, 162 (2013). 

  34. D. Ma and P. Wu, "Improved microstructure and mechanical?properties for Sn58Bi0.7Zn solder joint by addition of?graphene nanosheets", J. Alloys Compd., 671, 127 (2016). 

  35. K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-E. Jiang, Y.?Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,?"Electric field effect in atomically thin carbon films", Science, 306(5696), 666 (2004). 

  36. C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of?the elastic properties and intrinsic strength of monolayer?graphene", Science, 321(5887), 385 (2008). 

  37. A. K. Geim and K. S. Novoselov, "The rise of graphene",?Nat. Mater., 6(3), 183 (2007). 

  38. S. H. Lee, D. H. Lee, W. J. Lee, and S. O. Kim, "Tailored?assembly of carbon nanotubes and graphene", Adv. Funct.?Mater., 21(8), 1338 (2011). 

  39. Y.-H. Ko, J.-D. Lee, T. Yoon, C.-W. Lee, and T.-S. Kim,?"Controlling interfacial reactions and intermetallic compound?growth at the interface of a lead-free solder joint with layer-by-layer transferred graphene", ACS Appl. Mater. Interfaces, 8(8), 5679 (2016). 

  40. G. Lu, B. Lin, Z. Gao, W. Zhang, Y. Li, F. Wei, Y. Sui, J. Qi,?Q. Meng, and Y. Ren, "Nickel Nanoparticle/Carbon Films as?an Interlayer To Improve the Stability of Solder Joints", ACS?Appl. Nano Mater, 6(7), 5844 (2023). 

  41. G. Lu, Z. Gao, B. Lin, Y. Li, F. Wei, Y. Sui, J. Qi, Q. Meng,?Y. Ren, and Q. Yan, "Effects of Co Nanoparticles Embedded?in Carbon Skeleton Nanosheet Addition to Sn-0.7Cu Solder?on the Interfacial Reaction", ACS Appl. Nano Mater, 6(2), 1413 (2023). 

  42. Y. Li, S. Yu, L. Li, S. Song, W. Qin, D. Qi, W. Yang, and?Y. Zhan, "A Review on the Development of Adding Graphene?to Sn-Based Lead-Free Solder", Metals, 13(7), 1209 (2023). 

  43. Y.-H. Ko, K. Son, G. Kim, Y.-B. Park, D.-Y. Yu, J. Bang, and?T.-S. Kim, "Effects of graphene oxide on the electromigration?lifetime of lead-free solder joints", J. Mater. Sci. Mater. Electron., 30, 2334 (2019). 

  44. X. Yin, C. Wu, Z. Zhang, W. Yang, C. Xie, X. Yang, and Z.?Huang, "Highly reliable Cu-Cu low temperature bonding?using SAC305 solder with rGO interlayer", Microelectron.?Reliab., 129, 114483 (2022). 

  45. A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri,?F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, and S. Roth,?"Raman spectrum of graphene and graphene layers", Phys.?Rev. Lett., 97(18), 187401 (2006). 

  46. L. M. Lee and A. A. Mohamad, "Interfacial reaction of Sn-Ag-Cu Lead-Free solder alloy on Cu: a review", Adv. Mater.?Sci. Eng., 2013, 1 (2013). 

  47. W. K. Choi and H. M. Lee, "Effect of soldering and aging?time on interfacial microstructure and growth of intermetallic?compounds between Sn-3.5Ag solder alloy and Cu substrate",?J. Electron. Mater., 29(10), 1207 (2000). 

  48. X. Deng, R. Sidhu, P. Johnson, and N. Chawla, "Influence of?reflow and thermal aging on the shear strength and fracture?behavior of Sn-3.5Ag solder/Cu joints", Metall. Mater. Trans. A, 36(1), 55 (2005). 

  49. J.-W. Yoon, S.-W. Kim, and S.-B. Jung, "IMC growth and?shear strength of Sn-Ag-Bi-In/Au/Ni/Cu BGA joints during?aging", Mater. Trans., 45(3), 727 (2004). 

  50. C.-H. Wang, H.-H. Chen, P.-Y. Li, and P.-Y. Chu, "Kinetic?analysis of Ni 5 Zn 21 growth at the interface between Sn-Zn?solders and Ni", Intermetallics, 22, 166 (2012). 

  51. F. Gao and J. Qu, "Calculating the diffusivity of Cu and Sn?in Cu3Sn intermetallic by molecular dynamics simulations",?Mater. Lett., 73, 92 (2012). 

  52. S. Malola, H. Hakkinen, and P. Koskinen, "Gold in graphene:?in-plane adsorption and diffusion", Appl. Phys. Lett., 94(4), 043106 (2009). 

  53. J. A. RodriGuez-Manzo, O. Cretu, and F. Banhart, "Trapping?of metal atoms in vacancies of carbon nanotubes and graphene",?ACS Nano, 4(6), 3422 (2010). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로