$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Influence of Isolation Temperature on Isolating Diverse Lactic Acid Bacteria from Kimchi and Cultural Characteristics of Psychrotrophs 원문보기

Journal of microbiology and biotechnology, v.33 no.8, 2023년, pp.1066 - 1075  

Hye In Ko (Technology Innovation Research Division, World Institute of Kimchi) ,  Chang Hee Jeong (Technology Innovation Research Division, World Institute of Kimchi) ,  Se-Jin Park (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University) ,  So-Rim Kim (Technology Innovation Research Division, World Institute of Kimchi) ,  Jong-Bang Eun (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University) ,  Tae-Woon Kim (Technology Innovation Research Division, World Institute of Kimchi)

Abstract AI-Helper 아이콘AI-Helper

Kimchi is a traditional Korean fermented vegetable that is stored and fermented at low temperatures. However, kimchi lactic acid bacteria (LAB) are typically isolated under mesophilic conditions, which may be inappropriate for isolating the diverse LAB. Therefore, this study investigated the suitabl...

주제어

참고문헌 (46)

  1. Jung JY, Lee SH, Jeon CO. 2014. Kimchi microflora: history, current status, and perspectives for industrial kimchi production. Appl.?Microbiol. Biotechnol. 98: 2385-2393. 

  2. Kim JY, Park SE, Kim EJ, Seo SH, Whon TW, Cho KM, et al. 2022. Long-term population dynamics of viable microbes in a closed?ecosystem of fermented vegetables. Food Res. Int. 154: 111044. 

  3. Lee ME, Jang JY, Lee JH, Park HW, Choi HJ, Kim TW. 2015. Starter cultures for kimchi fermentation. J. Microbiol. Biotechnol.?25: 559-568. 

  4. Lee SH, Whon TW, Roh SW, Jeon CO. 2020. Unraveling microbial fermentation features in kimchi: from classical to meta-omics?approaches. Appl. Microbiol. Biotechnol. 104: 7731-7744. 

  5. Lee JJ, Choi YJ, Lee MJ, Park SJ, Oh SJ, Yun YR, et al. 2020. Effects of combining two lactic acid bacteria as a starter culture on model?kimchi fermentation. Food Res. Int. 136: 109591. 

  6. Hong SP, Lee EJ, Kim YH, Ahn DU. 2016. Effect of fermentation temperature on the volatile composition of kimchi. J. Food Sci.?81: C2623-C2629. 

  7. Pothakos V, Snauwaert C, De Vos P, Huys G, Devlieghere F. 2014. Psychrotrophic members of Leuconostoc gasicomitatum,?Leuconostoc gelidum and Lactococcus piscium dominate at the end of shelf-life in packaged and chilled-stored food products in?Belgium. Food Microbiol. 39: 61-67. 

  8. Shimodate K, Honda H. 2022. Isolation and identification of psychrotrophic lactic acid bacteria in godo, the traditional fermented?soy food in Japan. J. Gen. Appl. Microbiol. 68: 219-224. 

  9. Song HS, Lee SH, Ahn SW, Kim JY, Rhee JK, Roh SW. 2021. Effects of the main ingredients of the fermented food, kimchi, on?bacterial composition and metabolite profile. Food Res. Int. 149: 110668. 

  10. Lee D, Kim S, Cho J, Kim J. 2008. Microbial population dynamics and temperature changes during fermentation of kimjang kimchi.?J. Microbiol. 46: 590-593. 

  11. Kim EJ, Seo SH, Park SE, Lim YW, Roh SW, Son HS. 2020. Initial storage of kimchi at room temperature alters its microbial and?metabolite profiles. LWT 134: 110160. 

  12. Moon SH, Kim EJ, Kim EJ, Chang HC. 2018. Development of fermentation.storage mode for kimchi refrigerator to maintain the best?quality of kimchi during storage. Korean J. Food Sci. Technol. 50: 44-54. 

  13. Kim JY, Kim BS, Kim JH, Oh SI, Koo J. 2020. Development of dynamic model for real-time monitoring of ripening changes of kimchi?during distribution. Foods 9: 1075. 

  14. Nami Y, Bakhshayesh RV, Manafi M, Hejazi MA. 2019. Hypocholesterolaemic activity of a novel autochthonous potential probiotic?Lactobacillus plantarum YS5 isolated from yogurt. LWT 111: 876-882. 

  15. Yang S, Yan D, Zou Y, Mu D, Li X, Shi H, et al. 2021. Fermentation temperature affects yogurt quality: a metabolomics study. Food?Biosci. 42: 101104. 

  16. Baati H, Amdouni R, Gharsallah N, Sghir A, Ammar E. 2010. Isolation and characterization of moderately halophilic bacteria from?Tunisian solar saltern. Curr. Microbiol. 60: 157-161. 

  17. Chamkha M, Mnif S, Sayadi S. 2008. Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian high-temperature oil field. FEMS Microbiol. Lett. 283: 23-29. 

  18. Pothakos V, Snauwaert C, De Vos P, Huys G, Devlieghere F. 2014. Monitoring psychrotrophic lactic acid bacteria contamination in a?ready-to-eat vegetable salad production environment. Int. J. Food Microbiol. 185: 7-16. 

  19. Lee KW, Shim JM, Park SK, Heo HJ, Kim HJ, Ham KS, et al. 2016. Isolation of lactic acid bacteria with probiotic potentials from?kimchi, traditional Korean fermented vegetable. LWT 71: 130-137. 

  20. Won SM, Chen S, Park KW, Yoon JH. 2020. Isolation of lactic acid bacteria from kimchi and screening of Lactobacillus sakei ADM14?with anti-adipogenic effect and potential probiotic properties. LWT 126: 109296. 

  21. Lule V, Singh R, Behare P, Tomar SK. 2015. Comparison of exopolysaccharide production by indigenous Leuconostoc mesenteroides?strains in whey medium. Asian J. Dairy Food Res. 34: 8-12. 

  22. Petrut S, Rusu E, Tudorache IS, Pelinescu D, Sarbu I, Stoica I, et al. 2019. Influence of various carbon sources on growth and biomass?accumulation of some lactic acid bacteria strains. Rev. Chim. 70: 2434-2438. 

  23. Kim J, Kim JY, Kim MS, Roh SW, Bae JW. 2013. Lactobacillus kimchiensis sp. nov., isolated from a fermented food. Int. J. Syst. Evol.?Microbiol. 63: 1355-1359. 

  24. Lee SH, Park MS, Jung JY, Jeon CO. 2012. Leuconostoc miyukkimchii sp. nov., isolated from brown algae (Undaria pinnatifida)?kimchi. Int. J. Syst. Evol. Microbial. 62: 1098-1103. 

  25. Raimondi S, Spampinato G, Candeliere F, Amaretti A, Brun P, Castagliuolo I, et al. 2021. Phenotypic traits and immunomodulatory?properties of Leuconostoc carnosum isolated from meat products. Front. Microbiol. 12: 730827. 

  26. Cooper RK, Collins EB. 1978. Influences of temperature on growth of Leuconostoc cremoris. J. Dairy Sci. 61: 1085-1088. 

  27. Pothakos V, Nyambi C, Zhang BY, Papastergiadis A, De Meulenaer B, Devlieghere F. 2014. Spoilage potential of psychrotrophic lactic?acid bacteria (LAB) species: Leuconostoc gelidum subsp. gasicomitatum and Lactococcus piscium, on sweet bell pepper (SBP)?simulation medium under different gas compositions. Int. J. Food Microbiol. 178: 120-129. 

  28. Vesela H, Dorotikova K, Duskova M, Furmancikova P, Sedo O, Kamenik J. 2022. The pork meat or the environment of the?production facility? The effect of individual technological steps on the bacterial contamination in cooked hams. Microorganisms?10: 1106. 

  29. Kim E, Cho EJ, Yang SM, Kim MJ, Kim HY. 2021. Novel approaches for the identification of microbial communities in kimchi:?MALDI-TOF MS analysis and high-throughput sequencing. Food Microbiol. 94: 103641. 

  30. Salotra P, Singh DK, Seal KP, Krishna N, Jaffe H, Bhatnagar R. 1995. Expression of DnaK and GroEL homologs in Leuconostoc?mesenteroides in response to heat shock, cold shock or chemical stress. FEMS Microbiol. Lett. 131: 57-62. 

  31. Wang D, Chen G, Tang Y, Li H, Shen W, Wang M, et al. 2020. Effects of temperature on paocai bacterial succession revealed by?culture-dependent and culture-independent methods. Int. J. Food Microbiol. 317: 108463. 

  32. Makela PM, Korkeala HJ. 1992. The ability of the ropy slime-producing lactic acid bacteria to form ropy colonies on different culture?media and at different incubation temperatures and atmosphere. Int. J. Food Microbiol. 16: 161-166. 

  33. Lee DA, Collins EB. 1976. Influences of temperature on growth of Streptococcus cremoris and Streptococcus lactis. J. Dairy Sci.?59: 405-409. 

  34. Adamberg K, Kask S, Laht TM, Paalme T. 2003. The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat?study. Int. J. Food Microbiol. 85: 171-183. 

  35. Lu Y, Tan X, Lv Y, Yang G, Chi Y, He Q. 2020. Physicochemical properties and microbial community dynamics during Chinese horse?bean-chili-paste fermentation, revealed by culture-dependent and culture-independent approaches. Food Microbiol. 85: 103309. 

  36. Kesmen Z, Yetiman AE, Gulluce A, Kacmaz N, Sagdic O, Cetin B, et al. 2012. Combination of culture-dependent and culture-independent molecular methods for the determination of lactic microbiota in sucuk. Int. J. Food Microbiol. 153: 428-435. 

  37. Nguyen DTL, Van Hoorde K, Cnockaert M, De Brandt E, De Bruyne K, Le BT, et al. 2013. A culture-dependent and-independent?approach for the identification of lactic acid bacteria associated with the production of nem chua, a Vietnamese fermented meat?product. Food Res. Int. 50: 232-240. 

  38. Zhadyra S, Han X, Anapiyayev BB, Tao F, Xu P. 2021. Bacterial diversity analysis in Kazakh fermented milks Shubat and Ayran by?combining culture-dependent and culture-independent methods. LWT 141: 110877. 

  39. Nwachukwu U, George-Okafor U, Ozoani U, Ojiagu N. 2019. Assessment of probiotic potentials of Lactobacillus plantarum CS and?Micrococcus luteus CS from fermented milled corn-soybean waste-meal. Sci. Afr. 6: e00183. 

  40. Kim J, Lee MH, Kim MS, Kim GH, Yoon SS. 2022. Probiotic properties and optimization of gamma-aminobutyric acid production?by Lactiplantibacillus plantarum FBT215. J. Microbiol. Biotechnol. 32: 783-791. 

  41. Min B, Kim K, Li V, Cho S, Kim H. 2020. Changes in cell membrane fatty acid composition of Streptococcus thermophilus in response?to gradually increasing heat temperature. J. Microbiol. Biotechnol. 30: 739-748. 

  42. Shin Y, Kang CH, Kim W, So JS. 2019. Heat adaptation improved cell viability of probiotic Enterococcus faecium HL7 upon various?environmental stresses. Probiotics Antimicrob. Proteins 11: 618-626. 

  43. Alvarez-Ordonez A, Fernandez A, Lopez M, Arenas R, Bernardo A. 2008. Modifications in membrane fatty acid composition of?Salmonella typhimurium in response to growth conditions and their effect on heat resistance. Int. J. Food Microbiol. 123: 212-219. 

  44. Tlais AZA, Lemos Junior WJF, Filannino P, Campanaro S, Gobbetti M, Di Cagno R. 2022. How microbiome composition correlates?with biochemical changes during sauerkraut fermentation: a focus on neglected bacterial players and functionalities. Microbiol.?Spectr. 10: e0016822. 

  45. Moore JF, DuVivier R, Johanningsmeier SD. 2021. Formation of γ-aminobutyric acid (GABA) during the natural lactic acid?fermentation of cucumber. J. Food Compost. Anal. 96: 103711. 

  46. Andreevskaya M, Jaaskelainen E, Johansson P, Ylinen A, Paulin L, Bjorkroth J, et al. 2018. Food spoilage-associated Leuconostoc,?Lactococcus, and Lactobacillus species display different survival strategies in response to competition. Appl. Environ. Microbiol.?84: e00554-18. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로