$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

습식공정에 의한 폐리튬이온전지(LIB) 재활용 기술 현황 및 전망
Current Status and Prospect of Waste Lithium Ion Battery(LIB) Recycling Technology by Hydrometallurgical Process 원문보기

Resources recycling = 자원리싸이클링, v.32 no.4, 2023년, pp.3 - 17  

안재우 (대진대학교 신소재공학과) ,  조연철 (대진대학교 신소재공학과)

초록
AI-Helper 아이콘AI-Helper

최근 리튬이차전지 산업의 고속 성장과 함께 폐리튬이온전지 발생량이 급증하면서 폐리튬전지 재활용 사업이 주목을 받고 있다. 폐리튬전지 재활용 기술은 코발트, 니켈, 리튬 등 전지 내 함유되어 있는 고가의 유가금속을 재사용할 수 있는 자원순환 효과와 환경오염을 방지할 수 있다는 측면에서 매우 중요하다. 본 연구에서는 폐리튬전지를 전처리한 후에 발생되는 블랙파우더로 부터 습식공정에 의한 Mn, Co, Ni, Li 등을 분리·회수하는 기술에 대해 소개하고자 한다. 특히 분리공정의 핵심이라 할 수 있는 용매추출 기술의 적용 사례를 분석하여 효율적인 공정 설계 방안에 대하여 설명하고, 아울러 향후 주목을 받을 수 있는 친환경 미래 기술의 전망에 대해서도 소개하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Recently, due to the rapid growth of the lithium-ion battery(LIB) industry and the significant increase in waste LIB generation, the LIB recycling business has garnered global attention. The recycling of waste LIBs holds paramount importance as it facilitates resource circulation by reusing precious...

주제어

참고문헌 (74)

  1. A. Kraytsberg, Y. Ein-Eli, 2012 : Higher, stronger, better... A review of 5V cathode materials for advanced lithium-ion batteries, Advanced Energy Materials, 2(8), pp.922-939. 

  2. A. K. Awasthi, J. Li, 2017 : An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE, Resour. Conserv. Recycl., 126, pp.228-239. 

  3. J. Neumann, M. Petranikova, M. Meeus, et al., 2022 : Recycling of Lithium-Ion Batteries-Current State of the Art, Circular Economy, and Next Generation Recycling, Adv. Energy Mater., 12, 2102917, pp.1-26. 

  4. J. Xiao, J. Li, Z. Xu, 2020 : Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives, Environmental Science and Technology, 54(1), pp.9-25. 

  5. K. Yoo, 2023 : Lithium Ion Battery Recycling Industry in South Korea, Resources Recycling, 32(1), pp.13-20. 

  6. J. C. Jung, P. Sui, J. Zhang, 2021 : A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments, Journal of Energy Storage, 35, pp.102217. 

  7. T. Or, S. W. D Gourley, K. Kaliyappan, et al., 2020 : Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook, Carbon Energy, 2(1), pp.6-43. 

  8. P. Meshram, B. D. Pandey, T. R. Mankhand, 2015 : Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects, Waste Management, 45, pp.306-313. 

  9. K. Tanong, L. Coudert, G. Mercier, et al., 2016 : Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process, J. Environ. Manage., 181, pp.95-107. 

  10. F. Wang, R. Sun, J. Xu, et al., 2016 : Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid-liquid separation and solvent extraction, RSC Adv., 6, pp.85303-85311. 

  11. J. O. Demarco, J. S. Cadore, F. S. Oliveira, et al., 2019 : Recovery of metals from spent lithium-ion batteries using organic acids. Hydrometallurgy, 190, pp.105-169. 

  12. P. Meshram, A. Mishra, Abhilash, et al., 2020 : Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids-A review, Chemosphere, 242, pp.125291. 

  13. R. Golmohammadzadeh, F. Faraji, F. Rashchi, 2018 : Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review, Resour. Conserv. Recycl., 136, pp.418-435. 

  14. B. Musariri, G. Akdogan, C. Dorfling, et al., 2019 : Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries, Miner. Eng., 137, pp.108-117. 

  15. E. Gerold, C. Schinnerl, H. Antrekowitsch, 2022 : Critical Evaluation of the Potential of Organic Acids for the Environmentally Friendly Recycling of Spent Lithium-Ion Batteries, Recycling, 7(1), pp.4. 

  16. R. Golmohammadzadeh, F. Faraji, F. Rashchi, 2018 : Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review, Resour. Conserv. Recycl., 136, pp.418-435. 

  17. L. Li, E. Fan, Y. Guan, et al., 2017 : Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system, ACS Sustainable Chem. Eng., 5(6), pp.5224. 

  18. X. Liu, K. Huang, H. Xiong, et al., 2023 : Ammoniacal leaching process for the selective recovery of value metals from waste lithium-ion batteries, Environ. Technol., 44(2), pp.211-225. 

  19. X. Zheng, W. Gao, X. Zhang, et al., 2017 : Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite, Waste Manag., 60, pp.680-688. 

  20. Y. Chen, N. Liu, F. Hu, et al., 2018 : Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries, Waste Manag., 75, pp.469-476. 

  21. P. Meshram, Abhilash, B. D. Pandey, et al., 2016 : Comparision of different reductants in leaching of spent lithium ion batteries, JOM, 68(10), pp.2613-2623. 

  22. N. Vieceli, C. A. Nogueira, C. Guimaraes, et al.,, 2018 : Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite, Waste Manage., 71, pp.350-361. 

  23. Q. Meng, Y. Zhang, P. Dong, 2017 : Use of glucose as reductant to recover Co from spent lithium ions batteries, Waste Manag., 64, pp.214-218. 

  24. X. Xiao, B. W. Hoogendoorn, Y. Ma, et al., 2021 : Ultrasound-assisted extraction of metals from Lithium-ion batteries using natural organic acids, Green Chem., 23, pp.8519. 

  25. J. Sedlakova-Kadukova, R. Marcincakova, A. Luptakova, et al., 2020 : Comparison of three different bioleaching systems for Li recovery from lepidolite, Sci. Rep., 10, pp.14594. 

  26. A. Isildar, E. D. Hullebusch, M. Lenz, et al., 2019 : Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment(WEEE)-A review, J. Hazard. Mater., 362, pp.467-481. 

  27. J. J. Roy, B. Cao, S. Madhavi, 2021 : A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach, Chemosphere, 282, pp.130944. 

  28. J. Jegan Roy, M. Srinivasan, B. Cao, 2021 : Bioleaching as an Eco-Friendly Approach for Metal Recovery from Spent NMC-Based Lithium-Ion Batteries at a High Pulp Density, ACS Sustainable Chem. Eng., 9, pp.3060. 

  29. N. B. Horeh, S. M. Mousavi and S. A. Shojaosadati, 2016 : Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger, J. Power Sources, 320, pp.257-266. 

  30. N. Bahaloo-Horeh and S. M. Mousavi, 2017 : Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger, Waste Manag., 60, pp.666-679. 

  31. B. C. Behera, 2020 : Citric acid from Aspergillus niger: a comprehensive overview, Critical Reviews in Microbiology, 46(6), pp.1. 

  32. A. Zhu, X. Bian, W. Han, et al., 2023 : The application of deep eutectic solvents in lithium-ion battery recycling: a comprehensive review, Resources, conservation, and recycling, 188, pp.106690. 

  33. Y. Fan, Y. Kong, P. Jiang, et al., 2023 : Development and challenges of deep eutectic solvents for cathode recycling of end-of-life lithium-ion batteries, Chemical Engineering Journal, 463(1), pp.142278. 

  34. Y. Luo, C. Yin, L. Ou, et al., 2022 : Highly efficient dissolution of the cathode materials of spent Ni-Co-Mn lithium batteries using deep eutectic solvents, Green Chemistry, 17, pp.6562-6570. 

  35. S. Virolainen, T. Wesselborg, A. Kaukinen, et al., 2021 : Removal of iron, aluminium, manganese and copper from leach solutions of lithium-ion battery waste using ion exchange, Hydrometallurgy, 202, pp.105602. 

  36. D. Morin, C. Gagnebourque, E. Nadeau, et al., 2019, WO. 2019060996A1. 

  37. H. Wang, B. Friedrich, 2015 : Development of a highly efficient hydrometallurgical recycling process for automotive Li-ion batteries, J. Sustain. Metal. 1, pp.168-178. 

  38. B. Davis, K. Watson, A. Roy, et al., 2019 : Li-cycle-a case study in integrated process development, REWAS2019, MMMS, pp.247-260, The Minerals, Metals & Materials Society 2019, Springer Cham. 

  39. X. Chen, Y. Chen, T. Zhou, et al., 2015 : Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Manag., 38, pp.349-356. 

  40. X. Zhang, L. Li, E. Fan, et al., 2018 : Toward sustainable and systematic recycling of spent rechargeable batteries, Chem. Soc. Rev. 47(19), pp.7239-7302. 

  41. W. Lv, Z. Wang, H. Cao, et al., 2018 : A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries, ACS Sustainable Chem. Eng., 6, pp.1504-1521. 

  42. S. Virolainen, M. F. Fini, A. Laitinen, et al., 2017 : Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co, Sep. Purif. Technol., 179, pp.274-282. 

  43. S. Lei, W. Sun, Y. Yang, 2022 : Solvent extraction for recycling of spent lithium-ion batteries, Journal of Hazardous Materials, 424, pp.127654. 

  44. B. Swain, J. Jeong, J. Lee, et al., 2007 : Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries, J. Power Sources, 167(2), pp.536-544. 

  45. A. K. Jha, M. K. Jha, A. Kumari, et al., 2013 : Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant, Sep. Purif. Technol., 104, pp.160-166. 

  46. S. Joo, D. J. Shin, C. H. Oh, et al., 2016 : Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I, Hydrometallurgy, 159, pp.65-74. 

  47. K. Y. Wang, B. C. Cheng, W. Y. Shu, 1991 : Solvent extraction chemistry, Central South University of Technology, Hunan. 

  48. X. Chen, Y. Chen, T. Zhou, et al., 2015 : Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Manag., 38, pp.349-356. 

  49. Y. Yamaguchi, J. Hino, 2009, JP. 2009193778A. 

  50. A. B. Botelho Junior, S. Stopic, B. Friedrich, et al., 2021 : Cobalt Recovery from Li-Ion Battery Recycling: A Critical Review, Metals, 11(12), pp.1999. 

  51. X. Lin, X. Wang, G. Liu, et al., 2022 : Recycling of Power Lithium-Ion Batteries, Wiley-VCH, Weinheim. 

  52. Y. Yang, S. Lei, S. Song, et al., 2020 : Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries. Waste Manag., 102, pp.131-138. 

  53. W. Chen, H. Ho, 2018 : Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods, Metals 8(5), pp.321. 

  54. J. Zhao, X. Y. Shen, F. L. Deng, et al., 2011 : Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A, Sep. Purif. Technol., 78, pp.345-351. 

  55. Y. Yang, S. Xu, Y. He, 2017 : Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. Waste Manag., 64, pp.219-227. 

  56. L. Shuya, C. Yang, C. Xuefeng, et al., 2020 : Separation of lithium and transition metals from leachate of spent lithiumion batteries by solvent extraction method with Versatic 10, Separation and Purification Technology, 250, pp.117258. 

  57. E. Y. Kim, E. O, Bae, S. K. Jang, 2022, KR. 10-2022-0057136. 

  58. T. Liu, J. Chen, X. Shen, et al., 2021 : Regulating and regenerating the valuable metals from the cathode materials in lithium-ion batteries by nickel-cobalt-manganese co-extraction, Sep. Purif. Technol., 259, pp.118088. 

  59. Y. Cho, K. Kim, J. Ahn, 2021 : Recovery of Co and Ni from Strong Acidic Solution by Cyanex 301, Resources Recycling, 30(6), pp.28-35. 

  60. C. H. Jung, S.W. Park, 2021, KR. 10-2324910. 

  61. K. H. Kim, 2023 : A Study on the Separation of Valuable Metals in Waste Lithium Secondary Batteries by Preloading Solvent Extraction Method, Master's thesis, Daejin University. 

  62. M. C. Olivier, C. Dorfling, J. J. Eksteen, 2012 : Evaluating a solvent extraction process route incorporating nickel preloading of Cyanex 272 for the removal of cobalt and iron from nickel sulphate solutions, Minerals Engineering, 27-28, pp.37-51. 

  63. X. Chen, B. Xu, T. Zhou, et al., 2015 : Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries, Separation and Purification Technology, 144, pp.197-205. 

  64. X. Chen, Y. Chen, T. Zhou, et al., 2015 : Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Management, 38, pp.349-356. 

  65. D. H. Kim, Y. H. Kim, W. J Kim, 2022, KR. 10-2471399. 

  66. H. Zou, E. Gratz, D. Apelian, et al., 2013 : A novel method to recycle mixed cathode materials for lithium ion batteries, Green Chem., 15(5), pp.1183-1191. 

  67. Z. Zheng, M. Chen, Q. Wang, et al., 2018 : High Performance Cathode Recovery from Different Electric Vehicle Recycling Streams, ACS Sustain. Chem. Eng., 6(11), pp.13977-13982. 

  68. F. Larouche, F. Tedjar, K. Amouzegar, et al., 2020 : Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond, Materials, 13(3), pp.801. 

  69. E. Gratz, Q. Sa, D. Apelian, et al., 2014 : A closed loop process for recycling spent lithium ion batteries. J. Power Sources, 262, pp.255-262. 

  70. M. Chen, Z. Zheng, Q. Wang, et al., 2019 : Closed Loop Recycling of Electric Vehicle Batteries to Enable Ultra-high Quality Cathode Powder, Sci Rep., 9, pp.1654. 

  71. Y. Weng, S. Xu, G. Huang, et al., 2013 : Synthesis and performance of Li[(Ni 1/3 Co 1/3 Mn 1/3 )1-xMgx]O 2 prepared from spent lithium ion batteries, Journal of Hazardous Materials, 246-247, pp.163-172. 

  72. J. Fang, Z. Ding, Y. Ling, et al., 2022 : Green recycling and regeneration of LiNi0.5Co0.2Mn0.3O2 from spent Lithium-ion batteries assisted by sodium sulfate electrolysis, Chemical Engineering Journal, 440, pp.135880. 

  73. L. He, S. Sun, J. Yu, 2018 : Performance of LiNi1/3Co1/3Mn1/3O2 prepared from spent lithium-ionbatteries by a carbonate co-precipitation method, Ceramics International, 44(1), pp.351-357. 

  74. Y. Cho, K. Kim, J. Ahn, 2022 : Application of Electromembrane for Regeneration of NaOH and H 2 SO 4 from the Spent Na 2 SO 4 Solutions in Metal Recovery Process, Resources Recycling, 31(5), pp.1-18.? 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로