$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Path Loss Prediction Using an Ensemble Learning Approach 원문보기

韓國컴퓨터情報學會論文誌 = Journal of the Korea Society of Computer and Information, v.29 no.2, 2024년, pp.1 - 12  

Beom Kwon (Div. of Interdisciplinary Studies in Cultural Intelligence (Data Science Major), Dongduk Women's University) ,  Eonsu Noh (Agency for Defense Development)

초록
AI-Helper 아이콘AI-Helper

경로 손실(Path Loss)을 예측하는 것은 셀룰러 네트워크(Cellular Network)에서 기지국(Base Station) 의 설치 위치 선정 등 무선망 설계에 중요한 요인 중 하나다. 기존에는 기지국의 최적 설치 위치를 결정하기 위해 수많은 현장 테스트(Field Tests)를 통해 경로 손실 값을 측정했다. 따라서 측정에 많은 시간이 소요된다는 단점이 있었다. 이러한 문제를 해결하기 위해 본 연구에서는 머신러닝(Machine Learning, ML) 기반의 경로 손실 예측 방법을 제안한다. 특히, 경로 손실 예측 성능을 향상시키기 위해서 앙상블 학습(Ensemble Learning) 접근법을 적용하였다. 부트스트랩 데이터 세트(Bootstrap Dataset)을 활용하여 서로 다른 하이퍼파라미터(Hyperparameter) 구성을 갖는 모델들을 얻고, 이 모델들을 앙상블하여 최종 모델을 구축했다. 인터넷상에 공개된 경로 손실 데이터 세트를 활용하여 제안하는 앙상블 기반 경로 손실 예측 방법과 다양한 ML 기반 방법들의 성능을 평가 및 비교했다. 실험 결과, 제안하는 방법이 기존 방법들보다 우수한 성능을 달성하였으며, 경로 손실 값을 가장 정확하게 예측할 수 있다는 것을 입증하였다.

Abstract AI-Helper 아이콘AI-Helper

Predicting path loss is one of the important factors for wireless network design, such as selecting the installation location of base stations in cellular networks. In the past, path loss values were measured through numerous field tests to determine the optimal installation location of the base sta...

주제어

표/그림 (15)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구에서는 선행 연구들에서 ML 기반 모델이 보여준 연구 결과에 착안하여, 경로 손실 예측 성능 향상 방법을 연구했다. 본 연구의 주요 기여 포인트는 다음과 같다.
  • 본 연구에서는 앙상블 학습 접근법을 기반으로 한 경로 손실 예측 방법을 제안했다. 이 접근 방식은 앙상블 학습의 장점을 활용하여, 정확한 경로 손실 예측이 가능한 모델을 구축할 수 있도록 했다.
본문요약 정보가 도움이 되었나요?

참고문헌 (50)

  1. B. Kwon, S. Kim, H. Lee, and S. Lee, "A downlink power control?algorithm for long-term energy efficiency of small cell network,"?Wireless Networks, Vol. 21, pp. 2223-2236, October 2015. DOI:10.1007/s11276-015-0907-2 

  2. B. Kwon, S. Kim, D. Jeon, and S. Lee, "Iterative interference?cancellation and channel estimation in evolved multimedia broadcast?multicast system using filter-bank multicarrier-quadrature amplitude?modulation," IEEE Transactions on Broadcasting, Vol. 62, No.?4, pp. 864-875, December 2016. DOI: 10.1109/TBC.2016.2617294 

  3. B. Kwon, S. Kim, and S. Lee, "Scattered reference symbol-based?channel estimation and equalization for FBMC-QAM systems,"?IEEE Transactions on Communications, Vol. 65, No. 8, pp.?3522-3537, August 2017. DOI: 10.1109/TCOMM.2017.2710310 

  4. B. Kwon, and S. Lee, "Cross-antenna interference cancellation and?channel estimation for MISO-FBMC/QAM-based eMBMS,"?Wireless Networks, Vol. 24, pp. 3281-3293, November 2018. DOI:10.1007/s11276-017-1531-0 

  5. W. R. Loh, S. Y. Lim, I. F. M. Rafie, J. S. Ho, and K. S. Tze,?"Intelligent base station placement in urban areas with machine?learning," IEEE Antennas and Wireless Propagation Letters, Vol.?22, No. 9, pp. 2220-2224, September 2023. DOI: 10.1109/LAWP.2023.3281611 

  6. M. Hata, "Empirical formula for propagation loss in land mobile?radio services," IEEE Transactions on Vehicular Technology, Vol.?29, No. 3, pp. 317-325, August 1980. DOI: 10.1109/T-VT.1980.23859 

  7. Y. Okumura, "Field strength and its variability in VHF and UHF?land-mobile radio service," Review of the Electrical?communication Laboratory, Vol. 16, pp. 825-873, January 1968. 

  8. D. Green, Z. Yun, and M. F. Iskander, "Path loss characteristics?in urban environments using ray-tracing methods," IEEE Antennas?and Wireless Propagation Letters, Vol. 16, pp. 3063-3066, October?2017. DOI: 10.1109/LAWP.2017.2761299 

  9. I. J. Timmins, and S. O'Young, "Marine communications channel?modeling using the finite-difference time domain method," IEEE?Transactions on Vehicular Technology, Vol. 58, No. 6, pp.?2626-2637, July 2009. DOI: 10.1109/TVT.2008.2010326 

  10. B. Kwon, J. Kim, K. Lee, Y. K. Lee, S. Park, and S. Lee,?"Implementation of a virtual training simulator based on 360°?multi-view human action recognition," IEEE Access, Vol. 5, pp.?12496-12511, July 2017. DOI: 10.1109/ACCESS.2017.2723039 

  11. B. Kwon, H. Song, and S. Lee, "Accurate blind Lempel-Ziv-77?parameter estimation via 1-D to 2-D data conversion over?convolutional neural network," IEEE Access, Vol. 8, pp.?43965-43979, March 2020. DOI: 10.1109/ACCESS.2020.2977827 

  12. B. Kwon, and S. Lee, "Human skeleton data augmentation for?person identification over deep neural network," Applied?Sciences, Vol. 10, No. 14, pp. 1-22, July 2020. DOI: 10.3390/app10144849 

  13. B. Kwon, and S. Lee, "Ensemble learning for skeleton-based body?mass index classification," Applied Sciences, Vol. 10, No. 21,?pp. 1-23, November 2020. DOI: 10.3390/app10217812 

  14. B. Kwon, and S. Lee, "Joint swing energy for skeleton-based?gender classification," IEEE Access, Vol. 9, pp. 28334-28348,?February 2021. DOI: 10.1109/ACCESS.2021.3058745 

  15. B. Kwon, J. Huh, K. Lee, and S. Lee, "Optimal camera point?selection toward the most preferable view of 3-D human pose,"?IEEE Transactions on Systems, Man, and Cybernetics: Systems,?Vol. 52, No. 1, pp. 533-553, January 2022. DOI: 10.1109/TSMC.2020.3004338 

  16. B. Kwon, and T. Kim, "Toward an online continual learning?architecture for intrusion detection of video surveillance," IEEE?Access, Vol. 10, pp. 89732-89744, August 2022. DOI: 10.1109/ACCESS.2022.3201139 

  17. E. Ostlin, H. J. Zepernick, and H. Suzuki, "Macrocell path-loss?prediction using artificial neural networks," IEEE Transactions?on Vehicular Technology, Vol. 59, No. 6, pp. 2735-2747, May?2010. DOI: 10.1109/TVT.2010.2050502 

  18. M. Piacentini, and F. Rinaldi, "Path loss prediction in urban?environment using learning machines and dimensionality?reduction techniques," Computational Management Science, Vol.?8, pp. 371-385, November 2011. DOI: 10.1007/s10287-010-0121-8 

  19. R. D. Timoteo, D. C. Cunha, G. D. Cavalcanti, "A proposal for?path loss prediction in urban environments using support vector?regression," in Proc. 10th Advanced International Conference on?Telecommunications (AICT), pp. 1-5, Paris, France, July 2014. 

  20. O. J. Famoriji, and T. Shongwe, "Path Loss Prediction in Tropical?Regions using Machine Learning Techniques: A Case Study,"?Electronics, Vol. 11, No. 17, pp. 1-13, August 2022. DOI: 10.3390/electronics11172711 

  21. J. Wen, Y. Zhang, G. Yang, Z. He, and W. Zhang, "Path loss?prediction based on machine learning methods for aircraft cabin?environments," IEEE Access, Vol. 7, pp. 159251-159261,?October 2019. DOI: 10.1109/ACCESS.2019.2950634 

  22. C. E. G. Moreta, M. R. C. Acosta, and I. Koo, "Prediction of?digital terrestrial television coverage using machine learning?regression," IEEE Transactions on Broadcasting, Vol. 65, No.?4, pp. 702-712, March 2019. DOI: 10.1109/TBC.2019.2901409 

  23. M. K. Elmezughi, O. Salih, T. J. Afullo, and K. J. Duffy,?"Comparative analysis of major machine-learning-based path loss?models for enclosed indoor channels," Sensors, Vol. 22, No. 13,?pp. 1-25, June 2022. DOI: 10.3390/s22134967 

  24. P. R. Chang, and W. H. Yang, "Environment-adaptation mobile?radio propagation prediction using radial basis function neural?networks," IEEE Transactions on Vehicular Technology, Vol. 46,?No. 1, pp. 155-160, February 1997. DOI: 10.1109/25.554747 

  25. T. Balandier, A. Caminada, V. Lemoine, and F. Alexandre, "170?MHz field strength prediction in urban environment using neural?nets," in Proc. 6th IEEE International Symposium on Personal,?Indoor and Mobile Radio Communications, pp. 120-124, Toronto,?ON, Canada, September 1995. DOI: 10.1109/PIMRC.1995.476416 

  26. M. Kalakh, N. Kandil, and N. Hakem, "Neural networks model?of an UWB channel path loss in a mine environment," in Proc.?75th IEEE Vehicular Technology Conference (VTC Spring), pp.?1-5, Yokohama, Japan, May 2012. DOI: 10.1109/VETECS.2012.6240318 

  27. S. I. Popoola, A. Jefia, A. A. Atayero, O. Kingsley, N. Faruk,?O. F. Oseni, and R. O. Abolade, "Determination of neural?network parameters for path loss prediction in very high?frequency wireless channel," IEEE Access, Vol. 7, pp.?150462-150483, October 2019. DOI: 10.1109/ACCESS.2019.2947009? 

  28. Y. Zhang, J. Wen, G. Yang, Z. He, and J. Wang, "Path loss?prediction based on machine learning: Principle, method, and data?expansion," Applied Sciences, Vol. 9, No. 9, pp. 1-18, May 2019.?DOI: 10.3390/app9091908 

  29. D. Wu, G. Zhu, and B. Ai, "Application of artificial neural?networks for path loss prediction in railway environments," in?Proc. 5th IEEE International ICST Conference on?Communications and Networking in China, pp. 1-5, Beijing,?China, August 2010. 

  30. A. B. Zineb, and M. Ayadi, "A multi-wall and multi-frequency?indoor path loss prediction model using artificial neural?networks," Arabian Journal for Science and Engineering, Vol.?41, pp. 987-996, March 2016. DOI: 10.1007/s13369-015-1949-6 

  31. J. Liu, X. Jin, F. Dong, L. He, and H. Liu, "Fading channel?modelling using single-hidden layer feedforward neural?networks," Multidimensional Systems and Signal Processing,?Vol. 28, pp. 885-903, July 2017. DOI: 10.1007/s11045-015-0380-1 

  32. P. Gomez-Perez, M. Crego-Garcia, I. Cuinas, and R. F.?Caldeirinha, "Modeling and inferring the attenuation induced by?vegetation barriers at 2G/3G/4G cellular bands using artificial?neural networks," Measurement, Vol. 98, pp. 262-275, February?2017. DOI: 10.1016/j.measurement.2016.12.014 

  33. R. Adeogun, "Calibration of stochastic radio propagation models?using machine learning," IEEE Antennas and Wireless?Propagation Letters, Vol. 18, No. 12, pp. 2538-2542, December?2019. DOI: 10.1109/LAWP.2019.2942819 

  34. J. Y. Lee, M. Y. Kang, and S. C. Kim, "Path loss exponent?prediction for outdoor millimeter wave channels through deep?learning," in Proc. IEEE Wireless Communications and?Networking Conference (WCNC), pp. 1-5, Marrakesh, Morocco,?April 2019. DOI: 10.1109/WCNC.2019.8885668 

  35. N. Kuno, and Y. Takatori, "Prediction method by deep-learning?for path loss characteristics in an open-square environment," in?Proc. IEEE International Symposium on Antennas and?Propagation (ISAP), pp. 1-2, Busan, South Korea, October 2018. 

  36. N. Kuno, W. Yamada, M. Sasaki, and Y. Takatori, "Convolutional?neural network for prediction method of path loss characteristics?considering diffraction and reflection in an open-square?environment," in Proc. IEEE URSI Asia-Pacific Radio Science?Conference (AP-RASC), pp. 1-3, New Delhi, India, March 2019.?DOI: 10.23919/URSIAP-RASC.2019.8738299 

  37. O. Ahmadien, H. F. Ates, T. Baykas, and B. K. Gunturk,?"Predicting path loss distribution of an area from satellite images?using deep learning," IEEE Access, Vol. 8, pp. 64982-64991,?April 2020. DOI: 10.1109/ACCESS.2020.2985929 

  38. M. Bal, A. Marey, H. F. Ates, T. Baykas, and B. K. Gunturk,?"Regression of large-scale path loss parameters using deep neural?networks," IEEE Antennas and Wireless Propagation Letters, Vol.?21, No. 8, pp. 1562-1566, August 2022. DOI: 10.1109/LAWP.2022.3174357 

  39. H. F. Ates, S. M. Hashir, T. Baykas, and B. K. Gunturk, "Path?loss exponent and shadowing factor prediction from satellite?images using deep learning," IEEE Access, Vol. 7, pp.?101366-101375, July 2019. DOI: 10.1109/ACCESS.2019.2931072 

  40. U. S. Sani, O. A. Malik, and D. T. C. Lai, "Improving path?loss prediction using environmental feature extraction from?satellite images: Hand-crafted vs. convolutional neural network,"?Applied Sciences, Vol. 12, No. 15, pp. 1-24, July 2022. DOI:10.3390/app12157685 

  41. B. Kwon, and H. Son, "Accurate Path Loss Prediction Using?a Neural Network Ensemble Method," Sensors, Vol. 24, No. 1,?pp. 1-20, January 2024. DOI: 10.3390/s24010304 

  42. S. I. Popoola, A. A. Atayero, O. D. Arausi, and V. O. Matthews,?"Path loss dataset for modeling radio wave propagation in smart?campus environment," Data in Brief, Vol. 17, pp. 1062-1073,?April 2018. DOI: 10.1016/j.dib.2018.02.026 

  43. B. Kwon, J. Park, and S. Lee, "Virtual MIMO broadcasting?transceiver design for multi-hop relay networks," Digital Signal?Processing, Vol. 46, pp. 97-107, November 2015. DOI:10.1016/j.dsp.2015.08.003 

  44. B. Kwon, J. Park, and S. Lee, "A target position decision?algorithm based on analysis of path departure for an autonomous?path keeping system," Wireless Personal Communications, Vol.?83, pp. 1843-1865, August 2015. DOI: 10.1007/s11277-015-2485-0 

  45. B. Kwon, D. Kim, J. Kim, I. Lee, J. Kim, H. Oh, H. Kim, and?S. Lee, "Implementation of human action recognition system?using multiple Kinect sensors," in Proc. Pacific-Rim Conference?on Multimedia (PCM), pp. 334-343, Gwangju, Republic of Korea,?September 2015. DOI: 10.1007/978-3-319-24075-6_32 

  46. B. Kwon, J. Kim, and S. Lee, "An enhanced multi-view human?action recognition system for virtual training simulator," in Proc.?Asia-Pacific Signal and Information Processing Association?Annual Summit and Conference (APSIPA ASC), pp. 1-4, Jeju,?Republic of Korea, December 2016. DOI: 10.1109/APSIPA.2016.7820895 

  47. B. Kwon, M. Gong, and S. Lee, "Novel error detection algorithm?for LZSS compressed data," IEEE Access, Vol. 5, pp. 8940-8947,?May 2017. DOI: 10.1109/ACCESS.2017.2704900 

  48. B. Kwon, and S. Lee, "Effective interference nulling virtual?MIMO broadcasting transceiver for multiple relaying," IEEE?Access, Vol. 5, pp. 20695-20706, October 2017. DOI: 10.1109/ACCESS.2017.2752198 

  49. B. Kwon, M. Gong, J. Huh, and S. Lee, "Identification and?restoration of LZ77 compressed data using a machine learning?approach," in Proc. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference?(APSIPA ASC), pp. 1787-1790, Honolulu, HI, USA, November?2018. DOI: 10.23919/APSIPA.2018.8659755 

  50. B. Kwon, M. Gong, and S. Lee, "EDA-78: A novel error detection?algorithm for Lempel-Ziv-78 compressed data," Wireless Personal?Communications, Vol. 111, pp. 2177-2189, April 2020. DOI:10.1007/s11277-019-06979-7? 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로