$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Monitoring Time-Series Subsidence Observation in Incheon Using X-Band COSMO-SkyMed Synthetic Aperture Radar

대한원격탐사학회지 = Korean journal of remote sensing, v.40 no.2, 2024년, pp.141 - 150  

Sang-Hoon Hong (Department of Geological Sciences, Pusan National University)

Abstract AI-Helper 아이콘AI-Helper

Ground subsidence in urban areas is mainly caused by anthropogenic factors such as excessive groundwater extraction and underground infrastructure development in the subsurface composed of soft materials. Global Navigation Satellite System data with high temporal resolution have been widely used to ...

Keyword

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • An automated time-series differential DInSAR script developed by Pusan National University was applied to streamline data processing. This study aims to preliminary analyze possible ground subsidence using high-resolution X-band SAR data temporarily acquired in the early 2010s.
  • This paper conducts the SBAS data processing to detect where surface displacement occurs and further analyzes the characteristics and causes of ground subsidence using the collected COSMO-SkyMed SAR data. To illustrate the study area’s location, the Landsat-5 Thematic Mapper (TM) optical image around Incheon Metropolitan City is shown in Fig.
  • Geocoded time-series surface displacement maps were converted into a Google Earth kmz file format to analyze the regional characteristics of the ground subsidence and compare them with existing topographic maps. The five suspected ground subsidence areas are located near Incheon Subway Line 2 or Line 1 stations, suggesting the influence of underground construction associated with subsurface excavation.
  • This study constructed a network consisting of 80 interferograms for the SBAS data processing by setting the range of perpendicular baselines from 0 to 300 m and temporal baselines from 1 to 240 days. Fig.

대상 데이터

  • The COSMO-SkyMed, developed and is being operated in Italy, was launched in June and December 2007, October 2008, and November 2010, with four satellite constellations. The planned mission’s duration was from 2007 to 2019, and they are jointly operated by the ASI and the Italian Ministry of Defence (MoD).
  • The five suspected ground subsidence areas are located near Incheon Subway Line 2 or Line 1 stations, suggesting the influence of underground construction associated with subsurface excavation. The suspected subway stations include Gajeong Jungang Market Station, Gajaeul Station, Jooan National Industrial Complex Station, Inha University Station, and Bupyeong-gu Office Station.
  • The study area is located in Incheon Metropolitan City on the west coast of South Korea, partially encompassing the southern part of Ganghwa Island and the eastern part of Yeongjong Island. Although the swath width of the collected SAR observation also covers some areas of Seoul, Goyang City, Gimpo City, Bucheon City, Siheung City, and Gwangmyeong City, this study focuses primarily on discussing surface displacement occurred in Incheon Metropolitan City.

이론/모형

  • Commercial software Gamma was used for data processing, and Synthetic Aperture Radar PYthon scripts for Retrieval of Earth’s surface displacements (SARPYRE), an automated SBAS data processing script designed and implemented at Pusan National University, was applied
  • The minimum cost flow (MCF) algorithm was utilized for the phase unwrapping of differential interferograms, and then the phase unwrapping correction procedure was applied. Since each differential interferogram utilizes SAR observations acquired on different dates, inevitable atmospheric artifacts due to water vapor occur.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Abidin, H. Z.,Andreas, H., Djaja, R., Darmawan, D., and Gamal,?M., 2008. Land subsidence characteristics of Jakarta?between 1997 and 2005, as estimated using GPS surveys.?Gps Solutions, 12, 23-32. https://doi.org/10.1007/s10291-007-0061-0? 

  2. Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E., 2002. A?New algorithm for surface deformation monitoring based?on small baseline differential SAR interferograms. IEEE?Transactions on Geoscience and Remote Sensing, 40(11),?2375-2383. https://doi.org/10.1109/TGRS.2002.803792? 

  3. Bruno, M., 1992. Subsidence-induced well failure. SPE Drilling?Engineering, 7(2), 148-152. https://doi.org/10.2118/20058-PA? 

  4. Fattahi, H., Simons, M., and Agram, P., 2017. InSAR time-series?estimation of the ionospheric phase delay: An extension?of the split range-spectrum technique. IEEE Transactions?on Geoscience and Remote Sensing, 55(10), 5984-5996.?https://doi.org/10.1109/TGRS.2017.2718566? 

  5. Ferretti, A., Prati, C., and Rocca, F., 2001. Permanent scatterers?in SAR interferometry. IEEE Transactions on Geoscience?and Remote Sensing, 39(1), 8-20. https://doi.org/10.1109/36.898661? 

  6. Gabriel, A. K., Goldstein, R. M., andZebker, H. A., 1989.Mapping?small elevation changes overlarge areas: Differential radar?interferometry. Journal of Geophysical Research: Solid?Earth, 94(B7), 9183-9191. https://doi.org/10.1029/JB094iB07p09183? 

  7. Goldstein, R. M., and Werner, C. L., 1998. Radar interferogram?filtering for geophysical applications. Geophysical Research?Letters, 25, 4035-4038. https://doi.org/10.1029/1998GL900033? 

  8. Hanssen, R. F., 2001. Radar interferometry: Data interpretation?and error analysis(Vol. 2). Springer Science and Business?Media. https://doi.org/10.1007/0-306-47633-9? 

  9. Hong, S.-H., 2019. Parallel computing on intensity offset tracking?using synthetic aperture radar for retrieval of glacier?velocity. Korean Journal of Remote Sensing, 35(1), 29-37.?https://doi.org/10.7780/kjrs.2019.35.1.3? 

  10. Hong, S.-H., and Wdowinski, S., 2013. Multitemporal multitrack?monitoring of wetland water levels in the Florida Everglades?usingALOSPALSARdatawith interferometric processing.?IEEE Geoscience and Remote Sensing Letters, 11(8), 1355-1359. https://doi.org/10.1109/LGRS.2013.2293492? 

  11. Hong, S.-H., Wdowinski, S., and Kim, S.-W., 2009. Evaluation of?TerraSAR-X observations for wetland InSAR application.?IEEE Transactions on Geoscience and Remote Sensing,?48(2), 864-873. https://doi.org/10.1109/TGRS.2009.2026895? 

  12. Hong, S.-H., Wdowinski, S., Kim, S.-W., and Won, J.-S., 2010.?Multi-temporal monitoring of wetland water levelsin the?Florida Everglades using interferometric synthetic aperture?radar (InSAR). Remote Sensing of Environment, 114(11),?2436-2447. https://doi.org/10.1016/j.rse.2010.05.019? 

  13. Jolivet, R., Grandin, R., Lasserre, C., Doin, M. P., and Peltzer,?G., 2011. Systematic InSAR tropospheric phase delay?corrections from global meteorological reanalysis data.?Geophysical Research Letters, 38(17). https://doi.org/10.1029/2011GL048757? 

  14. Jung, H.-S., Lee, D.-T., Lu, Z., and Won, J.-S., 2012. Ionospheric?correction of SAR interferograms by multiple-aperture?interferometry. IEEE Transactions on Geoscience and?Remote Sensing, 51(5), 3191-3199. https://doi.org/10.1109/TGRS.2012.2218660? 

  15. Kampes, B. M., 2006. Radar interferometry (Vol. 12). Springer. 

  16. Kim, D. H., Bae, K. D., Ko, S. K., and Lee, W. J., 2010. Evaluation?of spatial distribution of secondary compression of Songdo marine clay by probabilistic method. Journal of the Korean?Geotechnical Society, 26(9), 25-35. https://doi.org/10.7843/kgs.2010.26.9.25? 

  17. Kim, E.K., 2018. Policy suggestions for the creation of a safe road?environment in Incheon City: Focused on measures for?the ground settlement management. Korean Journal of?Urban Studies, 13, 79-106. https://doi.org/10.34165/urbanr.2018..13.79? 

  18. Kim, S.-W., Wdowinski, S., Amelung, F., Dixon, T. H., and Won,?J.-S., 2013. Interferometric coherence analysis of the?Everglades wetlands, South Florida. IEEE Transactions?on Geoscience and Remote Sensing, 51(12), 5210-5224.?https://doi.org/10.1109/TGRS.2012.2231418? 

  19. Massonnet, D., and Feigl, K. L., 1998. Radar interferometry and?its application to changes in the Earth's surface. Reviews?of Geophysics, 36(4), 441-500. https://doi.org/10.1029/97RG03139? 

  20. Milliman, J. D., and Haq, B. U., 1996. Sea-level rise and coastal?subsidence: Causes, consequences, and strategies (Vol. 2).?Springer Science and Business Media.? 

  21. Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I.,?and Papathanassiou, K. P., 2013. A tutorial on synthetic?aperture radar. IEEE Geoscience and Remote Sensing?Magazine, 1(1), 6-43. https://doi.org/10.1109/MGRS.2013.2248301? 

  22. Park, S. W., and Hong, S. H., 2021. Nonlinear modeling of?subsidence from a decade of InSAR time-series. Geophysical?Research Letters, 48(3), e2020GL090970. https://doi.org/10.1029/2020GL090970? 

  23. Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N.,?Rodriguez, E., and Goldstein, R. M., 2000. Synthetic?aperture radar interferometry. Proceedings of the IEEE,?88(3), 333-382. https://doi.org/10.1109/5.838084? 

  24. Wessel, B., Huber, M.,Wohlfart, C., Marschalk, U., Kosmann, D.,?and Roth, A., 2018. Accuracy assessment of the global?TanDEM-X Digital Elevation Model with GPS data.?ISPRS Journal of Photogrammetry and Remote Sensing,?139, 171-182. https://doi.org/10.1016/j.isprsjprs.2018.02.017? 

  25. Wright, T. J., Parsons, B. E., and Lu, Z., 2004. Toward mapping?surface deformation in three dimensions using InSAR.?Geophysical Research Letters, 31(1). https://doi.org/10.1029/2003GL018827? 

  26. Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A., and?Werner, C. L., 1994. On the derivation of coseismic?displacement fields using differential radar interferometry:?The Landers earthquake. Journal of Geophysical Research:?Solid Earth, 99(B10), 19617-19634. https://doi.org/10.1029/94JB01179? 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로