$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Comparative Analysis of Supervised and Phenology-Based Approaches for Crop Mapping: A Case Study in South Korea 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.40 no.2, 2024년, pp.179 - 190  

Ehsan Rahimi (Agricultural Science and Technology Institute, Andong National University) ,  Chuleui Jung (Agricultural Science and Technology Institute, Andong National University)

Abstract AI-Helper 아이콘AI-Helper

This study aims to compare supervised classification methods with phenology-based approaches, specifically pixel-based and segment-based methods, for accurate crop mapping in agricultural landscapes. We utilized Sentinel-2A imagery, which provides multispectral data for accurate crop mapping. 31 nor...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • The comparison of these two approaches allowed for a comprehensive evaluation of their performance in the study area. Additionally, the study employed field surveys and ground truth data to assess the accuracy of the classified maps, utilizing metrics such as overall accuracy and the kappa coefficient. The results of the study demonstrated that the phenology-based approach, particularly the segment-based method, achieved acceptable classification accuracies, indicating its effectiveness in differentiating various crop types.
  • These points were then cross-referenced with Google Earth imagery and the previously collected field data to determine the actual crop type for each point. By comparing the assigned crop type from the classified map with the actual crop type, and confusion matrix, the overall accuracy and kappa coefficients were calculated as evaluation metrics for the classification accuracy.
  • To perform this step, we conducted a field survey of the study area in August 2022 to visually identify and locate the different crop types present. Given that the study area was primarily dominated by rice crops, we focused on recording the locations of other crops using GPS devices. These recorded locations served as training samples in the ENVI software, which allowed us to train the MaxLike algorithm for the accurate classification of crop types in the study area.
  • In regions like South Korea with a high frequency of rainy and cloudy days, particularly during the peak vegetation growth period, and where agricultural parcels are predominantly small (less than 1 hectare), mapping crops using phenology-based approaches can be challenging. In this study, we aim to compare the effectiveness of a phenology-based approach and a supervised approach (Maximum likelihood classification termed MaxLike) algorithm, in crop classification.
  • They also observed that incorporating a multi-temporal approach enhanced the accuracy for specific crop types. The researchers then shifted towards using object-based methods after initially employing simple pixel-based classification. The comparison revealed that object-based methods exhibited higher ability and performance compared to pixel-based methods for land-cover classification (Ma et al.

이론/모형

  • In the supervised classification step, we employed the MaxLike algorithm at the pixel level to compare the results with the phenology-based approach. To perform this step, we conducted a field survey of the study area in August 2022 to visually identify and locate the different crop types present.
  • Given that the study area was primarily dominated by rice crops, we focused on recording the locations of other crops using GPS devices. These recorded locations served as training samples in the ENVI software, which allowed us to train the MaxLike algorithm for the accurate classification of crop types in the study area.
본문요약 정보가 도움이 되었나요?

참고문헌 (36)

  1. Araya, S., Ostendorf, B., Lyle, G., and Lewis, M., 2018. Crop?phenology: An R package for extracting crop phenology?from time series remotely sensed vegetation index?imagery. Ecological Informatics, 46, 45-56. https://doi.org/10.1016/j.ecoinf.2018.05.006 

  2. Ashourloo, D., Nematollahi, H., Huete, A., Aghighi, H.,?Azadbakht, M., Shahrabi, H. S., and Goodarzdashti, S.,?2022. A new phenology-based method for mapping?wheat and barley using time-series of Sentinel-2 images.?Remote Sensing of Environment, 280, 113206. https://doi.org/10.1016/j.rse.2022.113206 

  3. Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M.,?Tsendbazar, N.-E., Herold, M., and Fritz, S., 2020.?Copernicus Global Land Service: Land Cover 100m:?collection 3: epoch 2018: Globe. Available online: https://doi.org/10.5281/zenodo.3518038 (accessed on Sept. 10, 2023). 

  4. De Castro, A. I., Six, J., Plant, R. E., and Pena, J. M., 2018.?Mapping crop calendar events and phenology-related?metrics at the parcel level by object-based image analysis?(OBIA) of MODIS-NDVI time-series: A case study in?central California. Remote Sensing, 10(11), 1745. https://doi.org/10.3390/rs10111745 

  5. De Wit, A., and Clevers, J., 2004. Efficiency and accuracy of?per-field classification for operational crop mapping.?International Journal of Remote Sensing, 25(20), 4091-4112. https://doi.org/10.1080/01431160310001619580 

  6. Dong, J., Xiao, X., Menarguez, M. A., Zhang, G., Qin, Y., Thau,?D. et al., 2016. Mapping paddy rice planting area in?northeastern Asia with Landsat 8 images, phenologybased?algorithm and Google Earth Engine. Remote Sensing?of Environment, 185, 142-154. https://doi.org/10.1016/j.rse.2016.02.016 

  7. Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Forkel,?M., Wingate, L. et al., 2016. Phenopix: AR package for?image-based vegetation phenology. Agricultural and Forest?Meteorology, 220, 141-150. https://doi.org/10.1016/j.agrformet.2016.01.006 

  8. Foerster, S., Kaden, K., Foerster, M., and Itzerott, S., 2012. Crop?type mapping using spectral-temporal profiles and?phenological information. Computers and Electronics in?Agriculture, 89, 30-40. https://doi.org/10.1016/j.compag.2012.07.015 

  9. Han, J., Zhang, Z., Cao, J., and Luo, Y., 2022. Mapping rapeseed?planting areas using an automatic phenology-and pixelbased?algorithm (APPA) in Google Earth Engine. The?Crop Journal, 10(5), 1483-1495. https://doi.org/10.1016/j.cj.2022.04.013 

  10. Hu, Q., Sulla-Menashe, D., Xu, B., Yin, H., Tang, H., Yang, P.,?and Wu, W., 2019. A phenology-based spectral and?temporal feature selection method for crop mapping?from satellite time series. International Journal of Applied?Earth Observation and Geoinformation, 80, 218-229. https://doi.org/10.1016/j.jag.2019.04.014 

  11. Hufkens, K., Basler, D., Milliman, T., Melaas, E. K., and Richardson,?A. D., 2018. An integrated phenology modeling framework?in R. Methods in Ecology and Evolution, 9(5), 1276-1285. https://doi.org/10.1111/2041-210X.12970 

  12. Karthikeyan, L., Chawla, I., and Mishra, A. K., 2020. A review of?remote sensing applications in agriculture for food?security: Crop growth and yield, irrigation, and crop?losses. Journal of Hydrology, 586, 124905. https://doi.org/10.1016/j.jhydrol.2020.124905 

  13. Liu, C., Zhang, Q., Tao, S., Qi, J., Ding, M., Guan, Q. et al., 2020a.?A new framework to map fine resolution cropping?intensity across the globe: Algorithm, validation, and?implication. Remote Sensing of Environment, 251, 112095. https://doi.org/10.1016/j.rse.2020.112095 

  14. Liu, J., Zhu, W., Atzberger, C., Zhao, A., Pan, Y., and Huang,?X., 2018. A phenology-based method to map cropping?patterns under a wheat-maize rotation using remotely?sensed time-series data. Remote Sensing, 10(8), 1203. https://doi.org/10.3390/rs10081203 

  15. Liu, L., Xiao, X., Qin, Y., Wang, J., Xu, X., Hu, Y., and Qiao, Z.,?2020b. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth?Engine. Remote Sensing of Environment, 239, 111624. https://doi.org/10.1016/j.rse.2019.111624 

  16. Ma, L., Li, M., Ma, X., Cheng, L., Du, P., and Liu, Y., 2017. A?review of supervised object-based land-cover image?classification. ISPRS Journal of Photogrammetry and?Remote Sensing, 130, 277-293. https://doi.org/10.1016/j.isprsjprs.2017.06.001 

  17. Mahlayeye, M., Darvishzadeh, R., and Nelson, A., 2022.?Cropping patterns of annual crops: A remote sensing?review. Remote Sensing, 14(10), 2404. https://doi.org/10.3390/rs14102404 

  18. Misra, G., Cawkwell, F., and Wingler, A., 2020. Status of?phenological research using Sentinel-2 data: A review.?Remote Sensing, 12(17), 2760. https://doi.org/10.3390/rs12172760 

  19. Nitze, I., Schulthess, U., and Asche, H., 2012. Comparison of?machine learning algorithms random forest, artificial?neural network and support vector machine to maximum?likelihood for supervised crop type classification. In?Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, May 7-9, pp. 35-40. 

  20. Nussbaum, S., Menz, G., Nussbaum, S., and Menz, G., 2008.?eCognition image analysis software. In: Object-based?image analysis and treaty verification, Springer, pp. 29-39. https://doi.org/10.1007/978-1-4020-6961-1_3 

  21. Ozdogan, M., Yang, Y., Allez, G., and Cervantes, C., 2010. Remote?sensing of irrigated agriculture: Opportunities and?challenges. Remote Sensing, 2(9), 2274-2304. https://doi.org/10.3390/rs2092274 

  22. Qiu, B., Jiang, F., Chen, C., Tang, Z., Wu, W., and Berry, J., 2021.?Phenology-pigment based automated peanut mapping?using Sentinel-2 images. GIScience & Remote Sensing,?58(8), 1335-1351. https://doi.org/10.1080/15481603.2021.1987005 

  23. Qiu, B., Li, W., Tang, Z., Chen, C., and Qi, W., 2015. Mapping?paddy rice areas based on vegetation phenology and?surface moisture conditions. Ecological Indicators, 56, 79-86. https://doi.org/10.1016/j.ecolind.2015.03.039 

  24. Rahimi, E., 2024. The efficiency of long short-term memory?(LSTM) in phenology-based crop classification. Korean?Journal of Remote Sensing, 40(1), 57-69. https://doi.org/10.7780/kjrs.2024.40.1.6 

  25. Rahimi, E., Barghjelveh, S., and Dong, P., 2021. Quantifying?how urban landscape heterogeneity affects land surface?temperature at multiple scales. Journal of Ecology and?Environment, 45(1), 1-13. https://doi.org/10.1186/s41610-021-00203-z 

  26. Rahimi, E., Barghjelveh, S., and Dong, P., 2022. A comparison of?discrete and continuous metrics for measuring landscape?changes. Journal of the Indian Society of Remote Sensing, 50(7), 1257-1273. https://doi.org/10.1007/s12524-022-01526-7 

  27. Singha, M., Wu, B., and Zhang, M., 2016. An object-based paddy?rice classification using multi-spectral data and crop?phenology in Assam, Northeast India. Remote Sensing, 8(6), 479. https://doi.org/10.3390/rs8060479 

  28. Tan, B., Morisette, J. T., Wolfe, R. E., Gao, F., Ederer, G. A.,?Nightingale, J., and Pedelty, J. A., 2010. An enhanced?TIMESAT algorithm for estimating vegetation phenology?metrics from MODIS data. IEEE Journal of Selected Topics?in Applied Earth Observations and Remote Sensing, 4(2), 361-371. https://doi.org/10.1109/JSTARS.2010.2075916 

  29. Tang, J., Korner, C., Muraoka, H., Piao, S., Shen, M., Thackeray,?S. J., and Yang, X., 2016. Emerging opportunities and?challenges in phenology: A review. Ecosphere, 7(8), e01436. https://doi.org/10.1002/ecs2.1436 

  30. Tian, H., Huang, N., Niu, Z., Qin, Y., Pei, J., Wang, J., 2019.?Mapping winter crops in China with multi-source satellite?imagery and phenology-based algorithm. Remote Sensing, 11(7), 820. https://doi.org/10.3390/rs11070820 

  31. Waldner, F., Canto, G. S., and Defourny, P., 2015. Automated?annual cropland mapping using knowledge-based temporal?features. ISPRS Journal of Photogrammetry and Remote?Sensing, 110, 1-13. https://doi.org/10.1016/j.isprsjprs.2015.09.013 

  32. Wang, Y., Fang, S., Zhao, L., Huang, X., and Jiang, X., 2022a.?Parcel-based summer maize mapping and phenology?estimation combined using Sentinel-2 and time series?Sentinel-1 data. International Journal of Applied Earth?Observation and Geoinformation, 108, 102720. https://doi.org/10.1016/j.jag.2022.102720 

  33. Wang, Y., Zhang, Z., Zuo, L., Wang, X., Zhao, X., and Sun, F.,?2022b. Mapping crop distribution patterns and changes?in China from 2000 to 2015 by fusing remote sensing,?statistics, and knowledge-based crop phenology. Remote?Sensing, 14(8), 1800. https://doi.org/10.3390/rs14081800 

  34. Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W.,?and Moore III, B., 2005. Mapping paddy rice agriculture?in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 95(4), 480-492. https://doi.org/10.1016/j.rse.2004.12.009 

  35. Zeng, L., Wardlow, B. D., Xiang, D., Hu, S., and Li, D., 2020.?A review of vegetation phenological metrics extraction?using time-series, multispectral satellite data. Remote?Sensing of Environment, 237, 111511. https://doi.org/10.1016/j.rse.2019.111511 

  36. Zhang, J., Chen, S., Wu, Z., and Fu, Y. H., 2022. Review of vegetation?phenology trends in China in a changing climate. Progress?in Physical Geography: Earth and Environment, 46(6), 829-845. https://doi.org/10.1177/03091333221114737 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로