$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 드론 방제의 최적화를 위한 딥러닝 기반의 밀도맵 추정
Density map estimation based on deep-learning for pest control drone optimization

드라이브ㆍ컨트롤 = Journal of drive and control, v.21 no.2, 2024년, pp.53 - 64  

성백겸 (Department of Biosystem Machinery Engineering, Chungnam National University) ,  한웅철 (Department of Biosystems Engineering, Kangwon National University) ,  유승화 (Department of Agricultural Engineering, National Institute of Agricultural Science) ,  이춘구 (Department of Agricultural Engineering, National Institute of Agricultural Science) ,  강영호 (Department of Crops and Foods, Jeonbuk State Agricultural Research and Extension Services) ,  우현호 (Dronedivisison Co. Ltd) ,  이헌석 (Woongjin Machinery Co. Ltd) ,  이대현 (Department of Biosystem Machinery Engineering, Chungnam National University)

Abstract AI-Helper 아이콘AI-Helper

Global population growth has resulted in an increased demand for food production. Simultaneously, aging rural communities have led to a decrease in the workforce, thereby increasing the demand for automation in agriculture. Drones are particularly useful for unmanned pest control fields. However, th...

Keyword

표/그림 (23)

참고문헌 (31)

  1. Y. T. Kim, et. al., "Technology trend on autonomous agricultural machinery", Journal of Drive and Control, Vol.19, No.1, pp.95-99, 2022.? 

  2. J. H. Won, et. al., "Study on traveling characteristics of straight automatic steering devices for drivable agricultural machinery", Journal of Drive and Control, Vol.19, No.4, pp.19-28, 2022.? 

  3. J. T. Lim, "A study on the characteristic analysis of the pest control drones using smart operating mode", Journal of Convergence for Information Technology, Vol.9, No.10, pp.108-113, 2019.? 

  4. J. U. Park, S. S. Kang and C. K. Lee, "A study on designing and evaluating the efficacy of drone utilization for agricultural pest control operations", Proceeding of the KMIS 2017 Spring Conference, pp.443-452, 2017.? 

  5. H. K. You, et. al., "An analysis of economic feasibility and perception of drone for pesticide application", Journal of the Korea Academia-Industrial cooperation Society, Vol.22, No.12, pp.235-245, 2021.? 

  6. B. G. Seong, et. al., "Predicting the spray uniformity of pest control drone using multi-layer perceptron", Journal of Drive and Control, Vol.20, No.3, pp.25-34, 2023.? 

  7. I. S. Moon, "Study on three-dimensional analysis of agricultural plants and drone-spray pesticide", Smart Media Journal, Vol.9, No.4, pp.176-186, 2020.? 

  8. N. Otsu, "A threshold selection method from gray-level histograms", IEEE Transactions on Systems, Man, and Cybernetics, Vol.9, No.1, pp.62-66, 1979.? 

  9. H. Zhu, M. Salyani and R. D. Fox, "A portable scanning system for evaluation of spray deposit distribution", Computers and Electronics in Agriculture, Vol.76, No.1, pp.38-43, 2011.? 

  10. C. Nansen, et. al., "Optimizing pesticide spray coverage using a novel web and smartphone tool, SnapCard", Agronomy for Sustainable Development, Vol.35, pp.1075-1085, 2015.? 

  11. O. B. Ozluoymak and A. Bolat, "Development and assessment of a novel imaging software for optimizing the spray parameters on water-sensitive papers", Computers and Electronics in Agriculture, Vol.168, 2020.? 

  12. B. Brandoli, et. al., "DropLeaf: A precision farming smartphone tool for real-time quantification of pesticide application coverage", Computers and Electronics in Agriculture, Vol.180, 2021.? 

  13. J. Liu, et. al., "Super-resolution semantic segment ation of droplet deposition image for low-cost spraying measurement", Agriculture, Vol.14, No.1, 2024.? 

  14. L. Xun and E. Gil, "A novel methodology for water-sensitive papers analysis focusing on the segmentation of overlapping droplets to better characterize deposition pattern", Crop Protection, Vol. 176, 2024.? 

  15. S. H. Yu, et. al., "Effects of UAV nozzle and spraying condition on spraying performance in rice field" Journal of the Korea Academia-Industrial cooperation Society, Vol.23, No.12, pp.803-808, 2022.? 

  16. S. H. Yu, et. al., "Analysis of nozzle spray characteristics by variation of spray pressure of drone spraying-system" Proceeding of the KSAM 2021 Spring Conference, Vol.26, No.1, pp.123-123, 2021.? 

  17. D. H. Lee, et. al., "Analysis of spraying performance of agricultural drones according to flight conditions", Korean Journal of Agricultural Science, Vol.50, No.3, pp.427-435, 2023.? 

  18. Y. Li, X. Zhang and D. Chen, "Csrnet: Dilated convolutional neural networks for understanding the highly congested scenes", Proceedings of the IEEE conference on computer vision and pattern recognition, pp.1091-1100, 2018.? 

  19. X. Cao, et. al., "Scale aggregation network for accurate and efficient crowd counting", Proceedings of the European conference on computer vision, pp.734-750, 2018.? 

  20. R. A. Dafsari, et. al., "Effect of geometrical parameters of air-induction nozzles on droplet characteristics and behaviour", Biosystems Engineering, Vol.209, pp.14-29, 2021.? 

  21. ASABE, 2009, "ASABE S572.1 Spray nozzle classification by droplet spectra", American Society of Agricultural and Biological Engineers, St joseph, Michigan, USA.? 

  22. C. W. Han, Y. T. Kim and S. W. Baek, "Development of environment simulation device for indoor verification system of agricultural drone", Proceeding of the KSAM 2022 Autumn Conference, Vol.27, No.2, pp.225-225, 2022.? 

  23. Y. Park, I. Um and H. Lee, "Design of Experiment and Analysis Method for the Integrated Logistics System Using Orthogonal Array", Journal of the Korea Academia-Industrial cooperation Society, Vol.12, No.12, pp.5622-5632, 2011.? 

  24. A. J. Lipinski and S. Lipinski, "Binarizing water sensitive papers-how to assess the coverage area properly?", Crop protection, Vol.127, 2020.? 

  25. T. Standley, et. al., "Which tasks should be learned together in multi-task learning?", International conference on machine learning. PMLR, pp.9120-9132, 2020.? 

  26. Y. Zhang and Q. Yang, "A survey on multi-task learning", IEEE Transactions on Knowledge and Data Engineering, Vol.34, No.12, pp.5586-5609 2021.? 

  27. L. Hou, et. al., "Patch-based convolutional neural network for whole slide tissue image classification", Proceedings of the IEEE conference on computer vision and pattern recognition, pp.2424-2433 2016.? 

  28. A. Kendall, Y. Gal and R. Cipolla, "Multi-task learning using uncertainty to weigh losses for scene geometry and semantics", Proceedings of the IEEE conference on computer vision and pattern recognition, pp.7482-7491 2018.? 

  29. S. H. Cho, et. al., "Estimation of two-dimensional position of soybean crop for developing weeding robot", Journal of Drive and Control, Vol.20, No.2, pp.15-23, 2023.? 

  30. S. Jadon, "A survey of loss functions for semantic segmentation", 2020 IEEE conference on computational intelligence in bioinformatics and computational biology, pp.1-7, 2020.? 

  31. T. J. Kim, et. al., "Development and performance analysis of a crawler-based driving platform for upland farming", Journal of Drive and Control, Vol.20, No.4, pp.100-106, 2023. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로