최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of Korea Artificial Intelligence Association, v.2 no.1, 2024년, pp.7 - 14
Geon AN (Department of Medical IT, Eulji University) , JooYong PARK (Department of Big Data Medical Convergence, Eulji University)
In this paper, we explore the application of RNA-sequencing data and ensemble machine learning to predict lung cancer and treatment strategies for lung cancer, a leading cause of cancer mortality worldwide. The research utilizes Random Forest, XGBoost, and LightGBM models to analyze gene expression ...
Ali, J., Khan, R., & Ahmad, N. (2012). Random forests and?decision trees. International Journal of Computer Science?Issues, 9(5). Retrieved from?https://www.uetpeshawar.edu.pk/TRP-G/Dr.Nasir-AhmadTRP/Journals/2012/Random%20Forests%20and%20Decision%20Trees.pdf
Baradaran Rezaei, H., Amjadian, A., Sebt, M. V., et al. (2023). An?ensemble method of the machine learning to prognosticate the?gastric cancer. Annals of Operations Research, 328, 151-192.?https://doi.org/10.1007/s10479-022-04964-1
Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning?Research, 13(Feb), 281-305. Retrieved from?https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
BigOmics Analytics. (2023, March 16). What is TPM??Understanding normalization methods for gene expression.?BigOmics Analytics. Retrieved from?https://bigomics.ch/blog/why-how-normalize-rna-seq-data/
Boateng, E., & Abaye, D. (2019). A review of the logistic?regression model with emphasis on medical research. Journal?of Data Analysis and Information Processing, 7, 190-207. doi: 10.4236/jdaip.2019.74012.
Bostanci, E., Kocak, E., Unal, M., Guzel, M. S., Acici, K., &?Asuroglu, T. (2023). Machine learning analysis of RNA-seq?data for diagnostic and prognostic prediction of colon cancer.?Sensors, 23(6), 3080. https://doi.org/10.3390/s23063080
Brown, K., Filuta, A., Ludwig, M. G., Seuwen, K., & Jaros, J.?(2017). Epithelial Gpr116 regulates pulmonary alveolar?homeostasis via Gq/11 signaling. JCI Insight, 2(11), e89704.?https://doi.org/10.1172/jci.insight.89704
Czepiel, S. A. (2002). Maximum likelihood estimation of logistic?regression models: Theory and implementation. Available at?czep.net/stat/mlelr.pdf
Ergin, S., Kherad, N., & Alagoz, M. (2022). RNA sequencing and?its applications in cancer and rare diseases. Molecular Biology?Reports, 49, 2325-2333. https://doi.org/10.1007/s11033-021-06963-0
Gad, A. A., & Balenga, N. (2020). The emerging role of adhesion?GPCRs in cancer. ACS Pharmacology & Translational?Science. https://doi.org/10.1021/acsptsci.9b00093
Gohiya, H., Lohiya, H., & Patidar, K. (2018). A survey of XGBoost?system. International Journal of Advanced Technology and?Engineering Research, 8(7). Retrieved from?http://www.ijater.com/Files/aa09b180-add4-4a6d-b234-bc122eb305d4_IJATER_39_07.pdf
Handoyo, S., Pradianti, N., Nugroho, W. H., & Akri, Y. J. (2022).?A heuristic feature selection in logistic regression modeling?with newton raphson and gradient descent algorithm.?International Journal of Advanced Computer Science and?Applications, 13(3).
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q.,?& Liu, T.-Y. (2017). LightGBM: A highly efficient gradient?boosting decision tree. Advances in Neural Information?Processing Systems, 30. Retrieved from?https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
Li, K., Chen, Y., Sun, R., Yu, B., Li, G., & Jiang, X. (2020).?Exploring potential of different X-ray imaging methods for?early-stage lung cancer detection. Journal of Medical Imaging?and Radiation Sciences, 5(2), 173-183.?https://dx.doi.org/10.1007/s41605-020-00173-1
Louppe, G. (2014). Understanding random forests: From theory to?practice. Cornell University Library. Retrieved from?https://www.researchgate.net/profile/GillesLouppe/publication/264312332_Understanding-RandomForests_From-Theory-toPractice/links/54ae38ea0cf2213c5fe427b7/UnderstandingRandom-Forests-From-Theory-to-Practice.pdf
Midthun, D. E. (2016). Early detection of lung cancer.?F1000Research, 5, F1000 Faculty Rev-739.?https://doi.org/10.12688/f1000research.7313.1
Napierala, M. A. (2012). What is the Bonferroni correction?, AAOS?Now, 40. Retrieved from?https://link.gale.com/apps/doc/A288979427/HRCA?uanon~94f28a3d&sidgoogleScholar&xidd9841e38
Nooreldeen, R., & Bach, H. (2021). Current and future?development in lung cancer diagnosis. International Journal?of Molecular Sciences, 22(16), 8661.?https://doi.org/10.3390/ijms22168661
Park, S.-K., Kim, S., Lee, G.-Y., Kim, S.-Y., Kim, W., Lee, C.-W.,?Park, J.-L., Choi, C.-H., Kang, S-B., & Kim, T.-O., et al.?(2021). Development of a machine learning model to?distinguish between ulcerative colitis and Crohn's disease?using RNA sequencing data. Diagnostics, 11(12), 2365.?https://doi.org/10.3390/diagnostics11122365
Piao, Y., Choi, N. H., Li, M., Piao, M., & Ryu, K. H. (2014).?Ensemble method for prediction of prostate cancer from?RNA-Seq data. Science Technology, 51-56.
Roderburg, C., Loosen, S. H., & Hippe, H. J. (2022). Pulmonary?hypertension is associated with an increased incidence of?cancer diagnoses. Pulmonary Circulation, 12(1), e12000.?https://doi.org/10.1002/pul2.12000
World Health Organization. (2020). Global Cancer Observatory:?Cancer today. International Agency for Research on Cancer.?Available from?https://gco.iarc.fr/today/data/factsheets/cancers/15-Lungfact-sheet.pdf
Witten, D., & Tibshirani, R. (2007). A comparison of fold-change?and the t-statistic for microarray data analysis. Analysis, 1776,?58-85.
Zhang, L., Geisler, T., Ray, H., & Xie, Y. (2022). Improving logistic?regression on the imbalanced data by a novel penalized log-likelihood function. Journal of Applied Statistics, 49(13),?3257-3277.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.