$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 청각 연구에서 기능적 뇌 영상 기술 적용에 대한 고찰: 난청을 중심으로
A review of the Implementation of Functional Brain Imaging Techniques in Auditory Research focusing on Hearing Loss 원문보기

Journal of biomedical engineering research : the official journal of the Korean Society of Medical & Biological Engineering, v.45 no.1, 2024년, pp.26 - 36  

설혜윤 (이화여자대학교 언어병리학과) ,  신재영 (원광대학교 전자공학과)

Abstract AI-Helper 아이콘AI-Helper

Functional brain imaging techniques have been used to diagnose psychiatric disorders such as dementia, depression, and autism. Recently, these techniques have also been actively used to study hearing loss. The present study reviewed the application of the functional brain imaging techniques in audit...

Keyword

표/그림 (6)

참고문헌 (120)

  1. Alshuaib WB, Al-Kandari JM and Hasan SM. Classification?of hearing loss. Update On Hearing Loss. 2015;4:29-37. 

  2. Tognola G, Mainardi A, Vincenti V and Cuda D. Benefit of?hearing aid use in the elderly: the impact of age, cognition?and hearing impairment. Acta Otorhinolaryngologica Italica.?2019;39(6):409-418. 

  3. Li-Korotky H-S. Age-Related Hearing Loss: Quality of Care?for Quality of Life. The Gerontologist. 2012;52(2):265-271. 

  4. Punch JL, Hitt R and Smith SW. Hearing loss and quality of?life. Journal of Communication Disorders. 2019;78:33-45. 

  5. Seol HY and Moon I. Hearables as a Gateway to Hearing?Health Care: A Review. Clinical and Experimental Otorhinolaryngology. 2022;15(2):127-134. 

  6. Devis T and Manuel M. A low-complexity 3-level filter bank?design for effective restoration of audibility in digital hearing?aids. Biomedical Engineering Letters. 2020;10(4):593-601. 

  7. Cho K, Nam KW, Lee JC, Hong SH, Kwon SY, Han J, Kim?D, Lee S and Kim IY. A comparison of frequency-invariant?beamforming algorithms for hearing aids: Differential microphone-based beamformers and the broadband beamformer.?Biomedical Engineering Letters. 2014;4(2):166-175. 

  8. Kim HP, Han JH, Kwon SY, Lee SM, Kim DW, Hong SH,?Kim IY and Kim SI. Sensitivity enhancement of speech perception in noise by sound training: Hearing loss simulation?study. Biomedical Engineering Letters. 2011;1(2):137-142. 

  9. Neto FSD and Rosa JLG. Depression biomarkers using?non-invasive EEG: A review. Neuroscience and Biobehavioral Reviews. 2019;105:83-93. 

  10. Groenewold NA, Opmeer EM, de Jonge P, Aleman A and?Costafreda SG. Emotional valence modulates brain functional?abnormalities in depression: Evidence from a meta-analysis?of fMRI studies. Neuroscience and Biobehavioral Reviews.?2013;37(2):152-163. 

  11. Wang J, Barstein J, Ethridge LE, Mosconi MW, Takarae Y?and Sweeney JA. Resting state EEG abnormalities in autism?spectrum disorders. Journal of Neurodevelopmental Disorders. 2013;5. 

  12. Torres-Simon L, Doval S, Nebreda A, Llinas SJ, Marsh EB?and Maestu F. Understanding brain function in vascular cognitive impairment and dementia with EEG and MEG: A systematic review. Neuroimage-Clinical. 2022;35. 

  13. Huettel SA, Song AW and McCarthy G. Functional magnetic?resonance imaging 3rd. Sunderland, MA: Sinauer Associates;?2014. 

  14. Niedermeyer E and da Silva FL. EEG: Basic Principles, Clinical Applications, and Related Fields Philadelphia, PA: Lippincott Williams & Wilkins; 2005. 

  15. Hamalainen M, Hari R, Ilmoniemi RJ, Knuutila J and Lounasmaa OV. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working?human brain. Reviews of modern Physics. 1993;65(2):413. 

  16. Ferrari M and Quaresima V. A brief review on the history?of human functional near-infrared spectroscopy (fNIRS)?development and fields of application. Neuroimage.?2012;63(2):921-935. 

  17. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proceedings of the National Academy of Sciences of the United States of America.?2000;97(16):9226-9233. 

  18. Lee HJ. Functional Neuroimaging in Neuro-otology. Korean J?Otorhinolaryngol-Head Neck Surg. 2008;51(4):302-311. 

  19. Fullerton AM, Vickers DA, Luke R, Billing AN, McAlpine?D, Hernandez-Perez H, Peelle JE, Monaghan JJM and McMahon CM. Cross-modal functional connectivity supports?speech understanding in cochlear implant users. Cerebral?Cortex. 2023;33(7):3350-3371. 

  20. Wang Y, Liu L, Zhang Y, Wei C, Xin T, He Q, Hou X and Liu?Y. The Neural Processing of Vocal Emotion After Hearing?Reconstruction in Prelingual Deaf Children: A Functional?Near-Infrared Spectroscopy Brain Imaging Study. Front Neurosci. 2021;15:705741. 

  21. Wang YY, Wu MY, Wu K, Liu HT, Wu SN, Zhang ZK, Liu M,?Wei CG, Zhang YX and Liu YH. Differential auditory cortical?development in left and right cochlear implanted children.?Cerebral Cortex. 2022;32(23):5438-5454. 

  22. Liu YD, Li H, Zhou X, Chen YR, Wang XT, Lin ZH, Niu HJ?and Liu HH. Functional connectivity changes in infants with?varying degrees of unilateral hearing loss. Cerebral Cortex.?2023;33(14):9165-9174. 

  23. Li LPH, Chen KC, Lee PL, Niddam DM, Cheng CM, Chou?CC, Hsieh JC and Shiao AS. Neuromagnetic index of hemispheric asymmetry predicting long-term outcome in sudden?hearing loss. Neuroimage. 2013;64:356-364. 

  24. Shang YY, Hinkley LB, Cai C, Subramaniam K, Chang YS,?Owen JP, Garrett C, Mizuiri D, Mukherjee P, Nagarajan SS?and Cheung SW. Functional and Structural Brain Plasticity in?Adult Onset Single-Sided Deafness. Frontiers in Human Neuroscience. 2018;12. 

  25. Presacco A, Simon JZ and Anderson S. Speech-in-noise representation in the aging midbrain and cortex: Effects of hearing loss. PLoS One. 2019;14(3):e0213899. 

  26. Heinrichs-Graham E, Walker EA, Taylor BK, Menting SC,?Eastman JA, Frenzel MR and McCreery RW. Auditory experience modulates fronto-parietal theta activity serving fluid?intelligence. Brain Commun. 2022;4(2):fcac093. 

  27. Heinrichs-Graham E, Walker EA, Lee WH, Benavente AA?and McCreery RW. Somatosensory gating is related to behavioral and verbal outcomes in children with mild-to-severe?hearing loss. Cerebral Cortex. 2023;33(9):5228-5237. 

  28. Han JH, Lee HJ, Kang H, Oh SH and Lee DS. Brain Plasticity?Can Predict the Cochlear Implant Outcome in Adult-Onset?Deafness. Frontiers in Human Neuroscience. 2019;13. 

  29. Karoui C, Strelnikov K, Payoux P, Salabert AS, James CJ,?Deguine O, Barone P and Marx M. Auditory cortical plasticity?after cochlear implantation in asymmetric hearing loss is related to spatial hearing: a PET H 2 ? 15 O study. Cerebral Cortex.?2023;33(5):2229-2244. 

  30. Song JJ, Lee HJ, Kang H, Lee DS, Chang SO and Oh SH.?Effects of congruent and incongruent visual cues on speech?perception and brain activity in cochlear implant users. Brain?Structure & Function. 2015;220(2):1109-1125. 

  31. Strelnikov K, Rouger J, Lagleyre S, Fraysse B, Demonet JF,?Deguine O and Barone P. Increased audiovisual integration in?cochlear-implanted deaf patients: independent components?analysis of longitudinal positron emission tomography data.?European Journal of Neuroscience. 2015;41(5):677-685. 

  32. Verger A, Roman S, Chaudat RM, Felician O, Ceccaldi M,?Didic M and Guedj E. Changes of metabolism and functional?connectivity in late-onset deafness: Evidence from cerebral?18F-FDG-PET. Hearing Research. 2017;353:8-16. 

  33. Cui WZ, Wang SS, Chen BY and Fan GG. Altered Functional?Network in Infants With Profound Bilateral Congenital Sensorineural Hearing Loss: A Graph Theory Analysis. Frontiers?in Neuroscience. 2022;15. 

  34. Li JH, Men WW, Gao JH, Wang Y, Qu XX, Zhu DCD and?Xian JF. Functional connectivity alteration of the deprived auditory regions with cognitive networks in deaf and inattentive?adolescents. Brain Imaging and Behavior. 2022;16(2):939-954. 

  35. Wang SS, Chen BY, Yu YL, Yang HG, Cui WZ, Li J and Fan?GG. Alterations of structural and functional connectivity in?profound sensorineural hearing loss infants within an early?sensitive period: A combined DTI and fMRI study. Developmental Cognitive Neuroscience. 2019;38. 

  36. Li Q, Guo H, Liu LH and Xia S. Changes in the functional?connectivity of auditory and language-related brain regions in?children with congenital severe sensorineural hearing loss: An?fMRI study. Journal of Neurolinguistics. 2019;51:84-95. 

  37. Xia S, Song TB, Che J, Li Q, Chai C, Zheng MZ and Shen W.?Altered Brain Functional Activity in Infants with Congenital?Bilateral Severe Sensorineural Hearing Loss: A Resting-State?Functional MRI Study under Sedation. Neural Plasticity.?2017;2017. 

  38. Schmithorst VJ, Plante E and Holland S. Unilateral deafness?in children affects development of multi-modal modulation?and default mode networks. Frontiers in Human Neuroscience. 2014;8. 

  39. Wang SS, Chen BY, Yu YL, Yang HG, Cui WZ, Fan GG and?Li J. Altered resting-state functional network connectivity in?profound sensorineural hearing loss infants within an early?sensitive period: A group ICA study. Human Brain Mapping.?2021;42(13):4314-4326. 

  40. Xing CH, Chen YC, Tong ZP, Xu WC, Xu JJ, Yin XD, Wu?YQ and Cai YX. Aberrant brain functional hubs and causal?connectivity in presbycusis. Brain Imaging and Behavior.?2021;15(1):453-463. 

  41. Zhou GP, Chen YC, Li WW, Wei HL, Yu YS, Zhou QQ, Yin?XD, Tao YJ and Zhang H. Aberrant functional and effective?connectivity of the frontostriatal network in unilateral acute?tinnitus patients with hearing loss. Brain Imaging and Behavior. 2022;16(1):151-160. 

  42. Hua JC, Xu XM, Xu ZG, Xue Y, Xu JJ, Hu JH, Wu YQ and?Chen YC. Abnormal cerebellar network and effective connectivity in sudden and long-term sensorineural hearing loss.?Frontiers in Aging Neuroscience. 2022;14. 

  43. Luan Y, Wang CX, Jiao Y, Tang TY, Zhang J, Lu CQ, Salvi R?and Teng GJ. Abnormal functional connectivity and degree?centrality in anterior cingulate cortex in patients with long-term sensorineural hearing loss. Brain Imaging and Behavior.?2020;14(3):682-695. 

  44. Xing CH, Chang W, Liu Y, Tong ZP, Xu XM, Yin XD, Wu?YQ, Chen YC and Fang XM. Alteration in resting-state effective connectivity within the Papez circuit in Presbycusis.?European Journal of Neuroscience. 2023. 

  45. Chen JW, Hu B, Qin P, Gao W, Liu CC, Zi DJ, Ding XR, Yu?Y, Cui GB and Lu LJ. Altered Brain Activity and Functional?Connectivity in Unilateral Sudden Sensorineural Hearing?Loss. Neural Plasticity. 2020;2020. 

  46. Fan ZY, Fan Z, Qiu TM, Hu LX, Shi Y, Xia YM, Sun XY, Liu?YJ, Li SC, Xia MR and Zhu W. Altered topological properties of the intrinsic functional brain network in patients with?right-sided unilateral hearing loss caused by acoustic neuroma. Brain Imaging and Behavior. 2022;16(4):1873-1883. 

  47. Yang M, Chen HJ, Liu B, Huang ZC, Feng Y, Li J, Chen JY,?Zhang LL, Ji H, Feng X, Zhu X and Teng GJ. Brain structural?and functional alterations in patients with unilateral hearing?loss. Hearing Research. 2014;316:37-43. 

  48. Zhang GY, Yang M, Liu B, Huang ZC, Chen H, Zhang PP, Li?J, Chen JY, Liu LJ, Wang J and Teng GJ. Changes in the default mode networks of individuals with long-term unilateral?sensorineural hearing loss. Neuroscience. 2015;285:333-42. 

  49. Ponticorvo S, Manara R, Cassandro E, Canna A, Scarpa A,?Troisi D, Cassandro C, Cuoco S, Cappiello A, Pellecchia MT,?Di Salle F and Esposito F. Cross-modal connectivity effects in?age-related hearing loss. Neurobiology of Aging. 2022;111:1-13. 

  50. Chen YC, Yong W, Xing CH, Feng Y, Haidari NA, Xu JJ, Gu?JP, Yin XD and Wu YQ. Directed functional connectivity of?the hippocampus in patients with presbycusis. Brain Imaging?and Behavior. 2020;14(3):917-926. 

  51. Xu HB, Fan WL, Zhao XY, Li J, Zhang WJ, Lei P, Liu Y,?Wang HH, Cheng HM and Shi H. Disrupted functional brain?connectome in unilateral sudden sensorineural hearing loss.?Hearing Research. 2016;335:138-148. 

  52. Zhou GP, Li WW, Chen YC, Wei HL, Yu YS, Guo X, Yin XD,?Tao YJ and Zhang H. Disrupted intra- and inter-network connectivity in unilateral acute tinnitus with hearing loss. Frontiers in Aging Neuroscience. 2022;14. 

  53. Yong W, Song JJ, Xing CH, Xu JJ, Xue Y, Yin XD, Wu YQ?and Chen YC. Disrupted Topological Organization of Resting-State Functional Brain Networks in Age-Related Hearing?Loss. Frontiers in Aging Neuroscience. 2022;14. 

  54. Xu XM, Nan Y, Tang TY, Zhang J, Lu CQ, Luan Y, Salvi R?and Teng GJ. Dissociation between Cerebellar and Cerebral?Neural Activities in Humans with Long-Term Bilateral Sens?orineural Hearing Loss. Neural Plasticity. 2019;2019. 

  55. Hong LW, Zeng QZ, Li KC, Luo X, Xu XP, Liu XC, Li ZY,?Fu Y, Wang YB, Zhang TY, Chen YX, Liu ZR, Huang PY,?Zhang MM and Alzheimers Dis N. Intrinsic Brain Activity of?Inferior Temporal Region Increased in Prodromal Alzheimer's?Disease With Hearing Loss. Frontiers in Aging Neuroscience.?2022;13. 

  56. Ponticorvo S, Manara R, Pfeuffer J, Cappiello A, Cuoco S,?Pellecchia MT, Troisi D, Scarpa A, Cassandro E, Di Salle F?and Esposito F. Long-Range Auditory Functional Connectivity in Hearing Loss and Rehabilitation. Brain Connect.?2021;11(6):483-492. 

  57. Li N, Ma W, Ren FX, Li X, Li FY, Zong W, Wu LL, Dai ZR,?Hui SCN, Edden RAE, Li MW and Gao F. Neurochemical?and functional reorganization of the cognitive-ear link underlies cognitive impairment in presbycusis. Neuroimage.?2023;268. 

  58. Luan Y, Wang CX, Jiao Y, Tang TY, Zhang J and Teng GJ.?Prefrontal-Temporal Pathway Mediates the Cross-Modal?and Cognitive Reorganization in Sensorineural Hearing Loss?With or Without Tinnitus: A Multimodal MRI Study. Frontiers?in Neuroscience. 2019;13. 

  59. Guan B, Xu YX, Chen YC, Xing CH, Xu L, Shang SA, Xu JJ,?Wu YQ and Yan Q. Reorganized Brain Functional Network?Topology in Presbycusis. Frontiers in Aging Neuroscience.?2022;14. 

  60. Marschall TM, Curcic-Blake B, Brederoo SG, Renken RJ,?Linszen MMJ, Koops S and Sommer IEC. Spontaneous brain?activity underlying auditory hallucinations in the hearing-impaired. Cortex. 2021;136:1-13. 

  61. Hinkley LBN, Larson PS, Sabes JH, Mizuiri D, Demopoulos C, Adams ME, Neylan TC, Hess CP, Nagarajan SS and?Cheung SW. Striatal networks for tinnitus treatment targeting.?Human Brain Mapping. 2022;43(2):633-646. 

  62. Rosemann S and Thiel CM. The effect of age-related hearing?loss and listening effort on resting state connectivity. Sci Rep.?2019;9(1):2337. 

  63. Husain FT, Carpenter-Thompson JR and Schmidt SA. The effect of mild-to-moderate hearing loss on auditory and emotion?processing networks. Front Syst Neurosci. 2014;8:10. 

  64. Biswal B, Yetkin FZ, Haughton VM and Hyde JS. Functional?connectivity in the motor cortex of resting human brain using?echo-planar MRI. Magn Reson Med. 1995;34(4):537-41. 

  65. Ma HL, Zeng TA, Jiang L, Zhang M, Li H, Su R, Wang ZX,?Chen DM, Xu M, Xie WT, Dang P, Bu XO, Zhang T and?Wang TZ. Altered resting-state network connectivity patterns for predicting attentional function in deaf individuals: An?EEG study. Hearing Research. 2023;429. 

  66. Gao MQ, Feng TC, Zhao F, Shen JX, Zheng YQ, Liang JX?and Yang HD. Cognitive reserve disorder in age-related hearing loss: cognitive cortical compensatory to auditory perceptual processing. Cerebral Cortex. 2023;33(16):9616-9626. 

  67. Petersen SE and Dubis JW. The mixed block/event-related?design. Neuroimage. 2012;62(2):1177-1184. 

  68. Rosemann S, Smith D, Dewenter M and Thiel CM. Age-related hearing loss influences functional connectivity of auditory?cortex for the McGurk illusion. Cortex. 2020;129:266-280. 

  69. Pereira-Jorge MR, Andrade KC, Palhano-Fontes FX, Diniz?PRB, Sturzbecher M, Santos AC and Araujo DB. Anatomical?and Functional MRI Changes after One Year of Auditory Rehabilitation with Hearing Aids. Neural Plasticity. 2018;2018. 

  70. Fang Y, Chen Q, Lingnau A, Han Z and Bi Y. Areas Recruited?during Action Understanding Are Not Modulated by Auditory or Sign Language Experience. Front Hum Neurosci.?2016;10:94. 

  71. Li YY, Peng DL, Liu L, Booth JR and Ding GS. Brain activation during phonological and semantic processing of Chinese?characters in deaf signers. Frontiers in Human Neuroscience.?2014;8. 

  72. Almeida J, He D, Chen Q, Mahon BZ, Zhang F, Goncalves O?F, Fang F and Bi Y. Decoding Visual Location From Neural?Patterns in the Auditory Cortex of the Congenitally Deaf. Psychol Sci. 2015;26(11):1771-82. 

  73. Qiao YF, Li XS, Shen H, Zhang X, Sun Y, Hao WY, Guo?BY, Ni DF, Gao ZQ, Guo H and Shang YY. Downward?cross-modal plasticity in single-sided deafness. Neuroimage.?2019;197:608-617. 

  74. Li Q, Xia S, Zhao F and Qi J. Functional changes in people?with different hearing status and experiences of using Chinese?sign language: An fMRI study. Journal of Communication?Disorders. 2014;50:51-60. 

  75. Ghazaleh N, van der Zwaag W, Clarke S, Van de Ville D,?Maire R and Saenz M. High-Resolution fMRI of Auditory?Cortical Map Changes in Unilateral Hearing Loss and Tinnitus. Brain Topography. 2017;30(5):685-697. 

  76. Van der Haegen L, Acke F, Vingerhoets G, Dhooge I, De?Leenheer E, Cai Q and Brysbaert M. Laterality and unilateral?deafness: Patients with congenital right ear deafness do not?develop atypical language dominance. Neuropsychologia.?2016;93(Pt B):482-492. 

  77. Whitton S, Kim JM, Scurry AN, Otto S, Zhuang XW, Cordes?D and Jiang F. Multisensory temporal processing in early?deaf. Neuropsychologia. 2021;163. 

  78. Wang XS, Caramazza A, Peelen MV, Han ZZ and Bi YC.?Reading Without Speech Sounds: VWFA and its Connectivity?in the Congenitally Deaf. Cerebral Cortex. 2015;25(9):2416-2426. 

  79. Pauquet J, Thiel CM, Mathys C and Rosemann S. Relationship between Memory Load and Listening Demands?in Age-Related Hearing Impairment. Neural Plasticity.?2021;2021. 

  80. Guerreiro MJS, Puschmann S, Eck J, Rienacker F, Van Gerven PWM and Thiel CM. The effect of hearing loss on age-related differences in neural distinctiveness. Aging, Neuropsychology, and Cognition.1-19. 

  81. Wolak T, Ciesla K, Lorens A, Kochanek K, Lewandowska M,?Rusiniak M, Pluta A, Wojcik J and Skarzynski H. Tonotopic?organisation of the auditory cortex in sloping sensorineural?hearing loss. Hearing Research. 2017;355:81-96. 

  82. Petersen EB, Wostmann M, Obleser J, Stenfelt S and Lunner?T. Hearing loss impacts neural alpha oscillations under adverse listening conditions. Front Psychol. 2015;6:177. 

  83. Gillis M, Decruy L, Vanthornhout J and Francart T. Hearing?loss is associated with delayed neural responses to continuous?speech. European Journal of Neuroscience. 2022;55(6):1671-1690. 

  84. Marsella P, Scorpecci A, Vecchiato G, Colosimo A, Maglione AG and Babiloni F. Neuroelectrical imaging study?of music perception by children with unilateral and bilateral cochlear implants. Cochlear Implants International.?2014;15(sup1):S68-S71. 

  85. Karoui C, Strelnikov K, Payoux P, Salabert AS, James CJ,?Deguine O, Barone P and Marx M. Auditory cortical plasticity?after cochlear implantation in asymmetric hearing loss is related to spatial hearing: a PET H 2 ? 15 O study. Cerebral Cortex.?2023;33(5):2229-2244. 

  86. Cai YX, Zheng YQ, Liang MJ, Zhao F, Yu GZ, Liu Y, Chen?YB and Chen GS. Auditory Spatial Discrimination and the?Mismatch Negativity Response in Hearing-Impaired Individuals. Plos One. 2015;10(8). 

  87. Senkowski D, Pomper U, Fitzner I, Engel AK and Kral A.?Beta-band activity in auditory pathways reflects speech localization and recognition in bilateral cochlear implant users.?Human Brain Mapping. 2014;35(7):3107-3121. 

  88. Gordon KA, Wong DDE and Papsin BC. Bilateral input protects the cortex from unilaterally-driven reorganization in?children who are deaf. Brain. 2013;136:1609-1625. 

  89. Xia TS, Xu GP and Mo L. Bi-lateralized Whorfian effect in?color perception: Evidence from Chinese Sign Language.?Journal of Neurolinguistics. 2019;49:189-201. 

  90. Jiwani S, Papsin BC and Gordon KA. Central auditory development after long-term cochlear implant use. Clinical Neurophysiology. 2013;124(9):1868-1880. 

  91. Campbell J and Sharma A. Compensatory changes in cortical?resource allocation in adults with hearing loss. Frontiers in?Systems Neuroscience. 2013;7:71. 

  92. Easwar V, Yamazaki H, Deighton M, Papsin B and Gordon K.?Cortical Processing of Level Cues for Spatial Hearing is Impaired in Children with Prelingual Deafness Despite Early Bilateral Access to Sound. Brain Topography. 2018;31(2):270-287. 

  93. Easwar V, Yamazaki H, Deighton M, Papsin B and Gordon?K. Cortical Representation of Interaural Time Difference Is?Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral?Cochlear Implants Provided Simultaneously. Journal of Neuroscience. 2017;37(9):2349-2361. 

  94. Jiwani S, Papsin BC and Gordon KA. Early Unilateral Cochlear Implantation Promotes Mature Cortical Asymmetries?in Adolescents Who Are Deaf. Human Brain Mapping.?2016;37(1):135-152. 

  95. Fuglsang SA, Marcher-Rorsted J, Dau T and Hjortkjaer J. Effects of Sensorineural Hearing Loss on Cortical Synchronization to Competing Speech during Selective Attention. Journal of Neuroscience. 2020;40(12):2562-2572. 

  96. Mathew AK, Purdy SC, Welch D, Pontoppidan NH and?Ronne FM. Electrophysiological and behavioural processing of complex acoustic cues. Clinical Neurophysiology.?2016;127(1):779-789. 

  97. Maslin MRD, Munro KJ and El-Deredy W. Evidence for?multiple mechanisms of cortical plasticity: A study of humans?with late-onset profound unilateral deafness. Clinical Neurophysiology. 2013;124(7):1414-1421. 

  98. Wang SJ, Li CL, Liu Y, Wang MY, Lin M, Yang L, Chen YN,?Wang Y, Fu XX, Zhang X and Wang S. Features of beta-gamma phase-amplitude coupling in cochlear implant users derived from EEG. Hearing Research. 2023;428. 

  99. Smieja DA, Dunkley BT, Papsin BC, Easwar V, Yamazaki H,?Deighton M and Gordon KA. Interhemispheric auditory connectivity requires normal access to sound in both ears during?development. Neuroimage. 2020;208:116455. 

  100. Nash-Kille A and Sharma A. Inter-trial coherence as a marker of cortical phase synchrony in children with sensorineural?hearing loss and auditory neuropathy spectrum disorder fitted with hearing aids and cochlear implants. Clinical Neurophysiology. 2014;125(7):1459-1470. 

  101. Revuelta P, Ortiz T, Lucia MJ, Ruiz B and Sanchez-Pena JM. Limitations of Standard Accessible Captioning of?Sounds and Music for Deaf and Hard of Hearing People: An?EEG Study. Frontiers in Integrative Neuroscience. 2020;14. 

  102. Mehrkian S, Moossavi A, Gohari N, Nazari MA, Bakhshi?E and Alain C. Long latency auditory evoked potentials and object-related negativity based on harmonicity in hearing-impaired children. Neuroscience Research.?2022;178:52-59. 

  103. Alemei R and Lehmann A. Middle Latency Responses to?Optimized Chirps in Adult Cochlear Implant Users. Journal?of the American Academy of Audiology. 2019;30(5):396-405. 

  104. Uhler K, Hunter S and Gilley PM. Mismatched response?predicts behavioral speech discrimination outcomes in?infants with hearing loss and normal hearing. Infancy.?2021;26(2):327-348. 

  105. Prince P, Paul BT, Chen J, Le T, Lin V and Dimitrijevic A.?Neural correlates of visual stimulus encoding and verbal?working memory differ between cochlear implant users and?normal-hearing controls. European Journal of Neuroscience. 2021;54(3):5016-5037. 

  106. Bertoli S and Bodmer D. Novel sounds as a psychophysiological measure of listening effort in older listeners?with and without hearing loss. Clinical Neurophysiology.?2014;125(5):1030-1041. 

  107. Finke M, Buchner A, Ruigendijk E, Meyer M and Sandmann P. On the relationship between auditory cognition?and speech intelligibility in cochlear implant users: An ERP?study. Neuropsychologia. 2016;87:169-181. 

  108. Nisha KV and Kumar UA. Pre-Attentive Neural Signatures of Auditory Spatial Processing in Listeners With?Normal Hearing and Sensorineural Hearing Impairment:?A Comparative Study. American Journal of Audiology.?2019;28(2):437-449. 

  109. Ruiz-Stovel VD, Gonzalez-Garrido AA, Gomez-Velazquez?FR, Alvarado-Rodriguez FJ and Gallardo-Moreno GB.?Quantitative EEG measures in profoundly deaf and normal?hearing individuals while performing a vibrotactile temporal discrimination task. International Journal of Psychophysiology. 2021;166:71-82. 

  110. Hidalgo C, Pesnot-Lerousseau J, Marquis P, Roman S and?Schon D. Rhythmic Training Improves Temporal Anticipation and Adaptation Abilities in Children With Hearing Loss?During Verbal Interaction. Journal of Speech Language and?Hearing Research. 2019;62(9):3234-3247. 

  111. Bell N, Angwin AJ, Arnott WL and Wilson WJ. Semantic processing in children with cochlear implants: Evidence?from event-related potentials. Journal of Clinical and Experimental Neuropsychology. 2019;41(6):576-590. 

  112. Chen JM, Zhao YX, Zou TM, Wen XL, Zhou XW, Yu YJ,?Liu Z and Li MG. Sensorineural Hearing Loss Affects Functional Connectivity of the Auditory Cortex, Parahippocampal Gyrus and Inferior Prefrontal Gyrus in Tinnitus Patients.?Frontiers in Neuroscience. 2022;16. 

  113. Dai LS, Best V and Shinn-Cunningham BG. Sensorineural hearing loss degrades behavioral and physiological measures of human spatial selective auditory attention. Proceedings of the National Academy of Sciences of the United?States of America. 2018;115(14):E3286-E3295. 

  114. Vavatzanidis NK, Murbe D, Friederici A and Hahne A. The?Basis for Language Acquisition: Congenitally Deaf Infants?Discriminate Vowel Length in the First Months after Cochlear Implantation. Journal of Cognitive Neuroscience.?2015;27(12):2427-2441. 

  115. Giroud N, Lemke U, Reich P, Matthes KL and Meyer M.?The impact of hearing aids and age-related hearing loss on?auditory plasticity across three months - An electrical neuroimaging study. Hearing Research. 2017;353:162-175. 

  116. Uhlen I, Engstrom E, Kallioinen P, Nakeva von Mentzer?C, Lyxell B, Sahlen B, Lindgren M and Ors M. Using a?multi-feature paradigm to measure mismatch responses to?minimal sound contrasts in children with cochlear implants?and hearing aids. Scand J Psychol. 2017;58(5):409-421. 

  117. Gonzalez-Garrido AA, Ruiz-Stovel VD, Gomez-Velazquez?FR, Velez-Perez H, Romo-Vazquez R, Salido-Ruiz RA, Espinoza-Valdez A and Campos LR. Vibrotactile Discrimination Training Affects Brain Connectivity in Profoundly Deaf?Individuals. Frontiers in Human Neuroscience. 2017;11. 

  118. Decruy L, Vanthornhout J and Francart T. Hearing impairment?is associated with enhanced neural tracking of the speech?envelope. Hearing Research. 2020;393. 

  119. Cartocci G, Scorpecci A, Borghini G, Maglione AG, Inguscio BMS, Giannantonio S, Giorgi A, Malerba P, Rossi D,?Modica E, Arico P, Di Flumeri G, Marsella P and Babiloni?F. EEG rhythms lateralization patterns in children with unilateral hearing loss are different from the patterns of normal?hearing controls during speech-in-noise listening. Hearing?Research. 2019;379:31-42. 

  120. Lazard DS, Lee HJ, Truy E and Giraud AL. Bilateral reorganization of posterior temporal cortices in post-lingual deafness and its relation to cochlear implant outcome. Human?Brain Mapping. 2013;34(5):1208-1219. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로