$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Cotargeting BET proteins overcomes resistance arising from PI3K/mTOR blockade‐induced protumorigenic senescence in colorectal cancer 원문보기

International journal of cancer: Journal international du cancer, v.147 no.10, 2020년, pp.2824 - 2837  

Lee, Ho‐Sung (Laboratory for Systems Biology and Bio‐) ,  Lee, Soobeom (Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) ,  Cho, Kwang‐Hyun (Laboratory for Systems Biology and Bio‐)

Abstract AI-Helper 아이콘AI-Helper

AbstractTherapeutics targeting the phosphatidylinositol 3‐kinase/mammalian target of rapamycin (PI3K/mTOR) pathway initially produce potent antitumor effects, but resistance frequently occurs. Using a phosphoproteome analysis, we found that colorectal cancer (CRC) cells exhibit resistance agai...

Keyword

참고문헌 (56)

  1. Holohan C , Van Schaeybroeck S , Longley DB , Johnston PG . Cancer drug resistance: an evolving paradigm . Nat Rev Cancer . 2013 ; 13 : 714 ‐ 726 . 

  2. Assmus HE , Herwig R , Cho KH , Wolkenhauer O . Dynamics of biological systems: role of systems biology in medical research . Expert Rev Mol Diagn . 2006 ; 6 : 891 ‐ 902 . 

  3. Schmidt H , Cho KH , Jacobsen EW . Identification of small scale biochemical networks based on general type system perturbations . FEBS J . 2005 ; 272 : 2141 ‐ 2151 . 

  4. Kim JR , Kim J , Kwon YK , Lee HY , Heslop‐Harrison P , Cho KH . Reduction of complex signaling networks to a representative kernel . Sci Signal . 2011 ; 4 : ra35 . 

  5. Kim JR , Cho KH . The multi‐step phosphorelay mechanism of unorthodox two‐component systems in E. coli realizes ultrasensitivity to stimuli while maintaining robustness to noises . Comput Biol Chem . 2006 ; 30 : 438 ‐ 444 . 

  6. Siegel RL , Miller KD , Fedewa SA , et al. Colorectal cancer statistics, 2017 . CA Cancer J Clin . 2017 ; 67 : 177 ‐ 193 . 

  7. Sever R , Brugge JS . Signal transduction in cancer . Cold Spring Harb Perspect Med . 2015 ; 5 : 1 – 21 . 

  8. Thorpe LM , Yuzugullu H , Zhao JJ . PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting . Nat Rev Cancer . 2015 ; 15 : 7 ‐ 24 . 

  9. Fruman DA , Rommel C . PI3K and cancer: lessons, challenges and opportunities . Nat Rev Drug Discov . 2014 ; 13 : 140 ‐ 156 . 

  10. Paplomata E , O'Regan R . The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers . Ther Adv Med Oncol . 2014 ; 6 : 154 ‐ 166 . 

  11. Janku F , Yap TA , Meric‐Bernstam F . Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol . 2018 ; 15 : 273 ‐ 291 . 

  12. Britschgi A , Andraos R , Brinkhaus H , et al. JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer . Cancer Cell . 2012 ; 22 : 796 ‐ 811 . 

  13. Chandarlapaty S , Sawai A , Scaltriti M , et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity . Cancer Cell . 2011 ; 19 : 58 ‐ 71 . 

  14. Ilic N , Utermark T , Widlund HR , Roberts TM . PI3K‐targeted therapy can be evaded by gene amplification along the MYC‐eukaryotic translation initiation factor 4E (eIF4E) axis . Proc Natl Acad Sci USA . 2011 ; 108 : E699 ‐ E708 . 

  15. Serra V , Eichhorn PJ , Garcia‐Garcia C , et al. RSK3/4 mediate resistance to PI3K pathway inhibitors in breast cancer . J Clin Invest . 2013 ; 123 : 2551 ‐ 2563 . 

  16. Wiegering A , Uthe FW , Jamieson T , et al. Targeting translation initiation bypasses signaling crosstalk mechanisms that maintain high MYC levels in colorectal Cancer . Cancer Discov . 2015 ; 5 : 768 ‐ 781 . 

  17. Buchanan CM , Lee KL , Shepherd PR . For better or worse: the potential for dose limiting the on‐target toxicity of PI 3‐kinase inhibitors . Biomolecules . 2019 ; 9 : 1 – 26 . 

  18. Zhang Y , Yan H , Xu Z , Yang B , Luo P , He Q . Molecular basis for class side effects associated with PI3K/AKT/mTOR pathway inhibitors . Expert Opin Drug Metab Toxicol . 2019 ; 15 : 767 ‐ 774 . 

  19. Engelman JA . Targeting PI3K signalling in cancer: opportunities, challenges and limitations . Nat Rev Cancer . 2009 ; 9 : 550 ‐ 562 . 

  20. Filippakopoulos P , Knapp S . Targeting bromodomains: epigenetic readers of lysine acetylation . Nat Rev Drug Discov . 2014 ; 13 : 337 ‐ 356 . 

  21. Stratikopoulos EE , Dendy M , Szabolcs M , et al. Kinase and BET inhibitors together clamp inhibition of PI3K signaling and overcome resistance to therapy . Cancer Cell . 2015 ; 27 : 837 ‐ 851 . 

  22. Stathis A , Bertoni F . BET proteins as targets for anticancer treatment . Cancer Discov . 2018 ; 8 : 24 ‐ 36 . 

  23. Shu S , Polyak K . BET Bromodomain proteins as Cancer therapeutic targets . Cold Spring Harb Symp Quant Biol . 2016 ; 81 : 123 ‐ 129 . 

  24. Alqahtani A , Choucair K , Ashraf M , et al. Bromodomain and extra‐terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy . Future Sci OA . 2019 ; 5 : FSO372 . 

  25. Maira SM , Stauffer F , Brueggen J , et al. Identification and characterization of NVP‐BEZ235, a new orally available dual phosphatidylinositol 3‐kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity . Mol Cancer Ther . 2008 ; 7 : 1851 ‐ 1863 . 

  26. Roper J , Richardson MP , Wang WV , et al. The dual PI3K/mTOR inhibitor NVP‐BEZ235 induces tumor regression in a genetically engineered mouse model of PIK3CA wild‐type colorectal cancer . PLoS One . 2011 ; 6 : e25132 . 

  27. Hanahan D , Weinberg RA . Hallmarks of cancer: the next generation . Cell . 2011 ; 144 : 646 ‐ 674 . 

  28. Campisi J . Aging, cellular senescence, and cancer . Annu Rev Physiol . 2013 ; 75 : 685 ‐ 705 . 

  29. Perez‐Mancera PA , Young AR , Narita M . Inside and out: the activities of senescence in cancer . Nat Rev Cancer . 2014 ; 14 : 547 ‐ 558 . 

  30. Muranen T , Selfors LM , Hwang J , et al. ERK and p38 MAPK activities determine sensitivity to PI3K/mTOR inhibition via regulation of MYC and YAP . Cancer Res . 2016 ; 76 : 7168 ‐ 7180 . 

  31. Juvekar A , Hu H , Yadegarynia S , et al. Phosphoinositide 3‐kinase inhibitors induce DNA damage through nucleoside depletion . Proc Natl Acad Sci USA . 2016 ; 113 : E4338 ‐ E4347 . 

  32. Xu Y , Li N , Xiang R , Sun P . Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene‐induced senescence . Trends Biochem Sci . 2014 ; 39 : 268 ‐ 276 . 

  33. Mathew R , Karantza‐Wadsworth V , White E . Role of autophagy in cancer . Nat Rev Cancer . 2007 ; 7 : 961 ‐ 967 . 

  34. Levy JMM , Towers CG , Thorburn A . Targeting autophagy in cancer . Nat Rev Cancer . 2017 ; 17 : 528 ‐ 542 . 

  35. Demaria M , O'Leary MN , Chang J , et al. Cellular senescence promotes adverse effects of chemotherapy and Cancer relapse . Cancer Discov . 2017 ; 7 : 165 ‐ 176 . 

  36. Chakradeo S , Elmore LW , Gewirtz DA . Is senescence reversible? Curr Drug Targets . 2016 ; 17 : 460 ‐ 466 . 

  37. Chitikova ZV , Gordeev SA , Bykova TV , Zubova SG , Pospelov VA , Pospelova TV . Sustained activation of DNA damage response in irradiated apoptosis‐resistant cells induces reversible senescence associated with mTOR downregulation and expression of stem cell markers . Cell Cycle . 2014 ; 13 : 1424 ‐ 1439 . 

  38. Wang Q , Wu PC , Dong DZ , et al. Polyploidy road to therapy‐induced cellular senescence and escape . Int J Cancer . 2013 ; 132 : 1505 ‐ 1515 . 

  39. Tchkonia T , Zhu Y , van Deursen J , Campisi J , Kirkland JL . Cellular senescence and the senescent secretory phenotype: therapeutic opportunities . J Clin Invest . 2013 ; 123 : 966 ‐ 972 . 

  40. Christopoulos PF , Msaouel P , Koutsilieris M . The role of the insulin‐like growth factor‐1 system in breast cancer . Mol Cancer . 2015 ; 14 : 43 . 

  41. Werner H , Sarfstein R . Transcriptional and epigenetic control of IGF1R gene expression: implications in metabolism and cancer . Growth Horm IGF Res . 2014 ; 24 : 112 ‐ 118 . 

  42. Brandt B , Meyer‐Staeckling S , Schmidt H , Agelopoulos K , Buerger H . Mechanisms of EGFR gene transcription modulation: relationship to cancer risk and therapy response . Clin Cancer Res . 2006 ; 12 : 7252 ‐ 7260 . 

  43. Purow BW , Sundaresan TK , Burdick MJ , et al. Notch‐1 regulates transcription of the epidermal growth factor receptor through p53 . Carcinogenesis . 2008 ; 29 : 918 ‐ 925 . 

  44. Wang H , Zhang L , Yang X , et al. PUMA mediates the combinational therapy of 5‐FU and NVP‐BEZ235 in colon cancer . Oncotarget . 2015 ; 6 : 14385 ‐ 14398 . 

  45. Ma Y , Wang L , Neitzel LR , Loganathan SN , Tang N , Qin L , Crispi EE , Guo Y , Knapp S , Beauchamp RD , Lee E , Wang J. The MAPK Pathway regulates intrinsic resistance to BET inhibitors in colorectal Cancer . Clin Cancer Res 2017 ; 23 : 2027 – 2037 . 

  46. McCleland ML , Mesh K , Lorenzana E , et al. CCAT1 is an enhancer‐templated RNA that predicts BET sensitivity in colorectal cancer . J Clin Invest . 2016 ; 126 : 639 ‐ 652 . 

  47. Lee J , Cacalano G , Camerato T , Toy K , Moore MW , Wood WI . Chemokine binding and activities mediated by the mouse IL‐8 receptor . J Immunol . 1995 ; 155 : 2158 ‐ 2164 . 

  48. Nomiyama H , Osada N , Yoshie O . The evolution of mammalian chemokine genes . Cytokine Growth Factor Rev . 2010 ; 21 : 253 ‐ 262 . 

  49. Gatla HR , Zou Y , Uddin MM , et al. Histone deacetylase (HDAC) inhibition induces IkappaB kinase (IKK)‐dependent Interleukin‐8/CXCL8 expression in ovarian cancer cells . J Biol Chem . 2017 ; 292 : 5043 ‐ 5054 . 

  50. Cancer Genome Atlas Research Network , Weinstein JN , Collisson EA , et al. The Cancer Genome Atlas pan‐Cancer analysis project . Nat Genet . 2013 ; 45 : 1113 ‐ 1120 . 

  51. Uhlen M , Oksvold P , Fagerberg L , et al. Towards a knowledge‐based human protein Atlas . Nat Biotechnol . 2010 ; 28 : 1248 ‐ 1250 . 

  52. Ahuja N , Sharma AR , Baylin SB . Epigenetic therapeutics: a new weapon in the war against Cancer . Annu Rev Med . 2016 ; 67 : 73 ‐ 89 . 

  53. Loganathan SN , Tang N , Holler AE , Wang N , Wang J . Targeting the IGF1R/PI3K/AKT pathway sensitizes Ewing sarcoma to BET Bromodomain inhibitors . Mol Cancer Ther . 2019 ; 18 : 929 ‐ 936 . 

  54. Risom T , Langer EM , Chapman MP , et al. Differentiation‐state plasticity is a targetable resistance mechanism in basal‐like breast cancer . Nat Commun . 2018 ; 9 : 3815 . 

  55. Derenzini E , Mondello P , Erazo T , et al. BET inhibition‐induced GSK3beta feedback enhances lymphoma vulnerability to PI3K inhibitors . Cell Rep . 2018 ; 24 : 2155 ‐ 2166 . 

  56. Nardella C , Clohessy JG , Alimonti A , Pandolfi PP . Pro‐senescence therapy for cancer treatment . Nat Rev Cancer . 2011 ; 11 : 503 ‐ 511 . 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로