$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] qMTNet: Accelerated quantitative magnetization transfer imaging with artificial neural networks

Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine, v.85 no.1, 2021년, pp.298 - 308  

Luu, Huan Minh (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea) ,  Kim, Dong‐Hyun (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea) ,  Kim, Jae‐Woong (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea) ,  Choi, Seung‐Hong (Department of Radiology, Seoul National University College of Medicine, Seoul, Korea) ,  Park, Sung‐Hong (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea)

Abstract AI-Helper 아이콘AI-Helper

PurposeTo develop a set of artificial neural networks, collectively termed qMTNet, to accelerate data acquisition and fitting for quantitative magnetization transfer (qMT) imaging.MethodsConventional and interslice qMT data were acquired with two flip angles at six offset frequencies from seven subj...

Keyword

참고문헌 (47)

  1. Wolff SD , Balaban RS . Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo . Magn Reson Med . 1989 ; 10 : 135 ‐ 144 . 

  2. Wolff SD , Chesnick S , Frank JA , Lim KO , Balaban RS . Magnetization transfer contrast: MR imaging of the knee . Radiology . 1991 ; 179 : 623 ‐ 628 . 

  3. Balaban RS , Ceckler TL . Magnetization transfer contrast in magnetic resonance imaging . Magn Reson Q . 1992 ; 8 : 116 ‐ 137 . 

  4. Flamig DP , Pierce WB , Harms SE , Griffey RH . Magnetization transfer contrast in fat‐suppressed steady‐state three‐dimensional MR images . Magn Reson Med . 1992 ; 26 : 122 ‐ 131 . 

  5. Henkelman RM , Huang X , Xiang QS , Stanisz GJ , Swanson SD , Bronskill MJ . Quantitative interpretation of magnetization transfer . Magn Reson Med . 1993 ; 29 : 759 ‐ 766 . 

  6. Harrison NA , Cooper E , Dowell NG , et al. Quantitative magnetization transfer imaging as a biomarker for effects of systemic inflammation on the brain . Biol Psychiatry . 2015 ; 78 : 49 ‐ 57 . 

  7. Levesque IR , Giacomini PS , Narayanan S , et al. Quantitative magnetization transfer and myelin water imaging of the evolution of acute multiple sclerosis lesions . Magn Reson Med . 2010 ; 63 : 633 ‐ 640 . 

  8. Mehrabian H , Myrehaug S , Soliman H , Sahgal A , Stanisz GJ . Quantitative magnetization transfer in monitoring glioblastoma (GBM) response to therapy . Sci Rep . 2018 ; 8 : 2475 . 

  9. Cabana J‐F , Gu Y , Boudreau M , et al. Quantitative magnetization transfer imaging made easy with qMTLab: Software for data simulation, analysis, and visualization . Concepts in Magnetic Resonance Part A . 2015 ; 44A : 263 ‐ 277 . 

  10. McLean MA . Accelerated Quantitative Magnetization Transfer (qMT) Imaging (Unpublished master's thesis) . University of Calgary . Calgary, AB ; 2018 : 94 . 

  11. Gochberg DF , Gore JC . Quantitative imaging of magnetization transfer using an inversion recovery sequence . Magn Reson Med . 2003 ; 49 : 501 ‐ 505 . 

  12. Dortch RD , Li K , Gochberg DF , et al. Quantitative magnetization transfer imaging in human brain at 3 T via selective inversion recovery . Magn Reson Med . 2011 ; 66 : 1346 ‐ 1352 . 

  13. Dortch RD , Moore J , Li K , et al. Quantitative magnetization transfer imaging of human brain at 7T . NeuroImage . 2013 ; 64 : 640 – 649 . 

  14. Kim JW , Lee SL , Choi SH , Park SH . Rapid framework for quantitative magnetization transfer imaging with interslice magnetization transfer and dictionary‐driven fitting approaches . Magn Reson Med . 2019 ; 82 : 1671 ‐ 1683 . 

  15. Dixon WT , Engels H , Castillo M , Sardashti M . Incidental magnetization transfer contrast in standard multislice imaging . Magn Reson Imaging . 1990 ; 8 : 417 ‐ 422 . 

  16. Yao L , Gentili A , Thomas A . Incidental magnetization transfer contrast in fast spin‐echo imaging of cartilage . J Magn Reson Imaging . 1996 ; 6 : 180 ‐ 184 . 

  17. Chang Y , Bae SJ , Lee YJ , et al. Incidental magnetization transfer effects in multislice brain MRI at 3.0T . J Magn Reson Imaging . 2007 ; 25 : 862 ‐ 865 . 

  18. Shin W , Gu H , Yang Y . Incidental magnetization transfer contrast by fat saturation preparation pulses in multislice Look‐Locker echo planar imaging . Magn Reson Med . 2009 ; 62 : 520 ‐ 526 . 

  19. Barker JW , Han PK , Choi SH , Bae KT , Park SH . Investigation of inter‐slice magnetization transfer effects as a new method for MTR imaging of the human brain . PLoS ONE . 2015 ; 10 : e0117101 . 

  20. Park SH , Duong TQ . Alternate ascending/descending directional navigation approach for imaging magnetization transfer asymmetry . Magn Reson Med . 2011 ; 65 : 1702 ‐ 1710 . 

  21. Park SH , Duong TQ . Brain MR perfusion‐weighted imaging with alternate ascending/descending directional navigation . Magn Reson Med . 2011 ; 65 : 1578 ‐ 1591 . 

  22. Kim KH , Choi SH , Park SH . Feasibility of quantifying arterial cerebral blood volume using multiphase alternate ascending/descending directional navigation (ALADDIN) . PLoS ONE . 2016 ; 11 : e0156687 . 

  23. Park H , Lee J , Park SH , Choi SH . Evaluation of tumor blood flow using alternate ascending/descending directional navigation in primary brain tumors: A comparison study with dynamic susceptibility contrast magnetic resonance imaging . Korean J Radiol . 2019 ; 20 : 275 ‐ 282 . 

  24. Ma D , Gulani V , Seiberlich N , et al. Magnetic resonance fingerprinting . Nature . 2013 ; 495 : 187 ‐ 192 . 

  25. Kim KH , Park SH . Artificial neural network for suppression of banding artifacts in balanced steady‐state free precession MRI . Magn Reson Imaging . 2017 ; 37 : 139 – 146 . 

  26. Hammernik K , Klatzer T , Kobler E , et al. Learning a variational network for reconstruction of accelerated MRI data . Magn Reson Med . 2018 ; 79 : 3055 ‐ 3071 . 

  27. Kim KH , Choi SH , Park S‐H . Improving arterial spin labeling by using deep learning . Radiology . 2018 ; 287 : 658 ‐ 666 . 

  28. Kim KH , Do WJ , Park SH . Improving resolution of MR images with an adversarial network incorporating images with different contrast . Med Phys . 2018 ; 45 : 3120 ‐ 3131 . 

  29. Han YS , Sunwoo L , Ye JC . k‐Space deep learning for accelerated MRI . IEEE Trans Med Imaging . 2020 ; 39 ( 2 ): 377 – 386 . 

  30. Seo S , Do W‐J , Luu HM , Kim KH , Choi SH , Park S‐H . Artificial neural network for slice encoding for metal artifact correction (SEMAC) MRI . Magn Reson Med . 2020 ; 84 : 263 – 276 . 

  31. Cercignani M , Alexander DC . Optimal acquisition schemes for in vivo quantitative magnetization transfer MRI . Magn Reson Med . 2006 ; 56 : 803 ‐ 810 . 

  32. Abadi AM , Barham P , Chen J , et al. TensorFlow: A System for Large‐Scale Machine Learning . Savannah, GA, USA : USENIX Association ; 2016 : 265 ‐ 283 . 

  33. Nair V , Hinton GE . Rectified linear units improve restricted boltzmann machines . In: Proceedings of the 27th International Conference on International Conference on Machine Learning. Haifa, Israel : Omnipress ; 2010 . p 807 ‐ 814 . 

  34. Huang G , Liu Z , van der Maaten L , Weinberger KQ . Densely Connected Convolutional Networks . CVPR : IEEE Computer Society ; 2017 : 2261 – 2269 . 

  35. Hornik K , Stinchcombe M , White H . Multilayer feedforward networks are universal approximators . Neural Netw . 1989 ; 2 : 359 ‐ 366 . 

  36. Ioffe S , Szegedy C . Batch normalization: Accelerating deep network training by reducing internal covariate shift . Proceedings of the 32nd International Conference on International Conference on Machine Learning ‐ Volume 37. Lille, France : JMLR.org ; 2015 . p 448 ‐ 456 . 

  37. Srivastava N , Hinton GE , Krizhevsky A , Sutskever I , Salakhutdinov R . Dropout: A simple way to prevent neural networks from overfitting . J Mach Learn Res . 2014 ; 15 : 1929 ‐ 1958 . 

  38. Kingma D , Ba J . Adam: A method for stochastic optimization . In: 3rd International Conference on Learning Representations. San Diego, CA, USA . 2015 . 

  39. Rahimi A , Recht B . Random features for large‐scale kernel machines . In: Proceedings of the 20th International Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada : Curran Associates Inc. ; 2007 . p 1177 ‐ 1184 . 

  40. Wilcoxon F . Individual comparisons by ranking methods . Biometrics Bulletin . 1945 ; 1 : 80 ‐ 83 . 

  41. Horsfield MA , Barker GJ , Barkhof F , Miller DH , Thompson AJ , Filippi M . Guidelines for using quantitative magnetization transfer magnetic resonance imaging for monitoring treatment of multiple sclerosis . J Magn Reson Imaging . 2003 ; 17 : 389 ‐ 397 . 

  42. Cohen O , Zhu B , Rosen MS . MR fingerprinting Deep RecOnstruction NEtwork (DRONE) . Magn Reson Med . 2018 ; 80 : 885 ‐ 894 . 

  43. Yoon J , Gong E , Chatnuntawech I , et al. Quantitative susceptibility mapping using deep neural network: QSMnet . NeuroImage . 2018 ; 179 : 199 ‐ 206 . 

  44. Lee J , Lee D , Choi JY , Shin D , Shin HG , Lee J . Artificial neural network for myelin water imaging . Magn Reson Med . 2020 ; 83 : 1875 – 1883 . 

  45. Callaghan MF , Freund P , Draganski B , et al. Widespread age‐related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging . Neurobiol Aging . 2014 ; 35 : 1862 ‐ 1872 . 

  46. Turati L , Moscatelli M , Mastropietro A , et al. In vivo quantitative magnetization transfer imaging correlates with histology during de‐ and remyelination in cuprizone‐treated mice . NMR Biomed . 2015 ; 28 : 327 ‐ 337 . 

  47. Caruana R . Multitask learning . Mach Learn . 1997 ; 28 : 41 – 75 . 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로