$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] SMART with trans-critical CO2 power conversion system for maritime propulsion in Northern Sea Route, part 2: Transient analysis

Annals of nuclear energy, v.150, 2021년, pp.107875 -   

Oh, Bong Seong (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Kim, Sung Joong (Department of Nuclear Engineering, Hanyang University) ,  Kim, Yonghee (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Lee, Jeong Ik (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST))

Abstract AI-Helper 아이콘AI-Helper

Abstract To utilize the Northern Sea Route as a future commercial maritime transport route, a container ship with nuclear power and icebreaking capability was considered as an alternative to fossil fuel engines due to better reliability and reduce greenhouse gas emission. SMART was selected due to ...

Keyword

참고문헌 (47)

  1. J. Transp. Geogr. Liu 18 3 434 2010 10.1016/j.jtrangeo.2009.08.004 The potential economic viability of using the Northern Sea Route (NSR) as an alternative route between Asia and Europe 

  2. At. Energy Alexandrov 5 1121 1958 10.1007/BF01472482 Atomic icebreaker “lenin” 

  3. T. Smith, J. Jalkanen, B. Anderson, J. Corbett, J. Faber, S. Hanayama, et al., Third imo ghg study, 2015. 

  4. Appl. Energy Cayer 86 1055 2009 10.1016/j.apenergy.2008.09.018 Analysis of a carbon dioxide transcritical power cycle using a low temperature source 

  5. Appl. Energy Baik 88 3 892 2011 10.1016/j.apenergy.2010.08.029 Power-based performance comparison between carbon dioxide and R125 transcritical cycles for a low-grade heat source 

  6. Energy Kim 43 1 402 2012 10.1016/j.energy.2012.03.076 Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources 

  7. S. M. Son, Study of applying adjoint sensitivity based parametric global optimization method to designing S-CO2 power cycle for SFR application, KAIST Master's thesis, 2018. 

  8. Appl. Therm. Eng. Baik 113 1536 2017 10.1016/j.applthermaleng.2016.11.132 Study on CO2 - water printed circuit heat exchanger performance operating under various CO₂ phases for S-CO₂ power cycle application 

  9. J. Lee, Study of Improved Design Methodology of S-CO2 Power Cycle Compressor for the Next Gen-eration Nuclear System Application, Doctoral Thesis, KAIST, 2016. 

  10. U.N.R. Commission, Policy and Technical Issues Associated with the Regulatory Treatment of Non-Safety Systems in Passive Plant Designs, Policy Issue SECY-94-084, 1994. 

  11. M.J. Hexemer, H.T. Hoang, K.D. Rahner, B.W. Siebert, G.D. Wahl, Integrated Systems Test (IST) Supercritical CO2 Brayton Loop Transient Model Description & Initial Results, Supercritical CO2 Power Cycle Symposium, Troy, NY, 2009. 

  12. M. Hexemer, K. Rahner, Supercritical CO2 Brayton Cycle Integrated System Test (IST) TRACE Model and Control System Design, in: Supercritical CO2 Power Cycle Symposium, Boulder, CO, May, 2011, pp. 24-25. 

  13. Hexemer 2014 The 4th International Symposium-Supercritical CO2 Power Cycles: Technologies for Transformational Energy Conversion Supercritical Co2 brayton recompression cycle design and control features to support startup and operation 

  14. 10.1115/GT2013-94893 A. Moisseytsev, J.J. Sienicki, Validation of the ANL plant dynamics code with the SNL S-CO2 loop transient data, in: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, 2013. 

  15. A. Moisseytsev, J.J. Sienicki, SIMULATION OF S-CO2 INTEGRATED SYSTEM TEST WITH ANL PLANT DYNAMICS CODE, in: The 5th International Symposium - Supercritical CO2 Power Cycles, March 28-31, San Antonio, Texas, 2016. 

  16. General Analyzer for Multi-Componenet and Multi-dimensional Transient Application-GAMMA+1.0 Volume 1,2: User’s and Theory manual, Korea Atomic Energy Research Institute, 2014. 

  17. Appl. Therm. Eng. Bae 99 572 2016 10.1016/j.applthermaleng.2016.01.075 Experimental and numerical investigation of supercritical CO 2 test loop transient behavior near the critical point operation 

  18. Ann. Nucl. Energy Oh 110 1202 2017 10.1016/j.anucene.2017.08.038 Safety evaluation of supercritical CO2 cooled micro modular reactor 

  19. Bae 2018 A Study of Trans-critical CO2 Power Cycle for Nuclear Marine Application 

  20. G.B. Wallis, One-dimensional two-phase flow, 1969. 

  21. Chem. Eng. Sci. Mitrovic 55 2265 2000 10.1016/S0009-2509(99)00475-3 Upon equilibrium of gas bubble in infinite liquid 

  22. Int. J. Refrig. Park 32 1129 2009 10.1016/j.ijrefrig.2009.01.030 CO2 flow condensation heat transfer and pressure drop in multi-port microchannels at low temperatures 

  23. Int. J. Refrig Lucas 43 154 2014 10.1016/j.ijrefrig.2014.03.003 Numerical investigation of a two-phase CO2 ejector 

  24. J. Fluids Eng. Zhang 127 1194 2005 10.1115/1.2060738 Modeling of supercritical CO2 flow through short tube orifices 

  25. 2016 Advanced Engineering Thermodynamics 

  26. Y. Jeong, Compressor Off-design Performacne Prediction Method with Similitude Analysis for Supercritical CO2 cooled Nuclear Reactor, KAIST Master's thesis, 2019. 

  27. Int. J. Heat Mass Transf. Bae 129 1206 2019 10.1016/j.ijheatmasstransfer.2018.10.055 Condensation heat transfer and multi-phase pressure drop of CO2 near the critical point in a printed circuit heat exchanger 

  28. H.O. Kang, J.K. Seo, J.H. Yoon, State of the Art Report for Steam Pressure Control Systems of Boiler and Nuclear Plants, Korea Atomic Energy Research Institute, 2006. 

  29. Kang 283 2008 16th International Conference on Nuclear Engineering Option study on a steam pressure control logic for SMART 

  30. G. Lee, S. Yang, S. Lee, H. Lim, H. Kim, Performance assessment for SMART basic design, Korea Atomic Energy Research Institute, 2002. 

  31. G. H. Lee, H. Lim, S. Sim, Preliminary evaluation of the SMART conceptual design, 1999. 

  32. J.J. Kelly Jr., G.E. Rambo, Method of nuclear reactor control using a variable temperature load dependent set point, ed: Google Patents, 1982. 

  33. S.H. Yang Safety Analysis Report for SMART Basic Design KAERI/TR-2173/2002, 2002. 

  34. G.N. Energy, Assessment of BWR Mitigation of ATWS, Volume I and II (NUREG-0460 Alternate No. 3), December 1979 NEDE-24222. 

  35. Nucl. Eng. Des. Chung 244 52 2012 10.1016/j.nucengdes.2011.12.013 Development and assessment of system analysis code, TASS/SMR for integral reactor, SMART 

  36. V. Dostal, M.J. Driscoll, P. Hejzlar, A supercritical carbon dioxide cycle for next generation nuclear reactors, USA: Massachusetts Institute of Technology, vol. MIT-ANP-TR-100, 2004. 

  37. N.A. Carstens, D.M. Driscoll, D.P. Hejzlar, D.J. Coderre, Control Strategies for Supercritical Carbon Dioxide Power Conversion Systems, USA: Massachusetts Institute of Technology, vol. 213502891-MIT, 2007. 

  38. A. Moisseytsev, J.J. Sienicki, Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor,“ ANL-06/27; TRN: US0704255 United States10.2172/910536TRN: US0704255Tue Feb 05 05:30:08 EST 2008ANLEnglish, 2007. 

  39. Nucl. Technol. Kumar 2004 Performance review: PBMR closed cycle gas turbine power plant 

  40. F. Openshaw, E. Estrine, M. Croft, Control of a gas turbine HTGR, in: ASME 1976 International Gas Turbine and Fluids Engineering Conference, 1976, pp. V01BT02A032-V01BT02A032. 

  41. 10.1115/74-WA/GT-7 R. Covert, J. Krase, D. Morse, Effect of various control modes on the steady-state full and part load performance of a direct-cycle nuclear gas turbine power plant, in: ASME 1974 Winter Annual Meeting: GT Papers, 1974, pp. V001T01A002-V001T01A002. 

  42. Trans. ASME Salzmann 69 329 1947 Regulation theory for thermal power plants employing a closed gas cycle 

  43. X. Yan, Dynamic analysis and control system design for an advanced nuclear gas turbine power plant,“ Massachusetts Institute of Technology, 1990. 

  44. J.Y. Baek, J.-I. Lee, Design and Modeling of Heat Exchangers for S-CO2 Brayton Cycle Coupled to water-cooled Small Modular Reactor, in: NTHAS11: The Eleventh Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety, 2018. 

  45. Lamarsh 2001 2001 Introduction to Nuclear Engineering 

  46. G.C. Park, Study for concept of Nuclear Ship Propulsion, Final report of Hyundai Heavy Industries, 2007. 

  47. Rossi 1975 ASME 1975 International Gas Turbine Conference and Products Show Propulsion power plants for large icebreakers with special reference to gas turbine applications 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로