$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Mycena genomes resolve the evolution of fungal bioluminescence 원문보기

Proceedings of the National Academy of Sciences of the United States of America, v.117 no.49, 2020년, pp.31267 - 31277  

Ke, Huei-Mien (Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan) ,  Lee, Hsin-Han ,  Lin, Chan-Yi Ivy (Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan) ,  Liu, Yu-Ching ,  Lu, Min R. (Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan) ,  Hsieh, Jo-Wei Allison ,  Chang, Chiung-Chih (Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan) ,  Wu, Pei-Hsuan ,  Lu, Meiyeh Jade (Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan) ,  Li, Jeng-Yi ,  Shang, Gaus (Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan) ,  Lu, Rita Jui-Hsien ,  Nagy, László (Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan) ,  G. ,  Chen, Pao-Yang (Master Program for Plant Medicine and Good Agricultural Practice, National Chung Hsing University, Taichung 402, Taiwan) ,  Kao, Hsiao-Wei ,  Tsai, Isheng Jason (Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan)

Abstract AI-Helper 아이콘AI-Helper

SignificanceWe present the genomes of five new bonnet mushroom Mycena species, formerly the last fungal bioluminescent lineage lacking reference genomes. These genome-scale datasets allowed us to construct an evolutionary model pinpointing all possible changes in the luciferase cluster across all fu...

Keyword

참고문헌 (96)

  1. 1 He M. , Notes, outline and divergence times of Basidiomycota . Fungal Divers. 99 , 105 ? 367 ( 2019 ). 

  2. 2 Wei C. , Kirschner R. , A new Mycena species with blue basidiomata and porioid hymenophore from Taiwan . Mycoscience 60 , 10 ? 13 ( 2019 ). 

  3. 3 Thoen E. , In vitro evidence of root colonization suggests ecological versatility in the genus Mycena . New Phytol. 227 , 601 ? 612 ( 2020 ). 32171021 

  4. 4 Chew A. , Desjardin D. , Tan Y. , Musa M. , Sabaratnam V. , Bioluminescent fungi from Peninsular Malaysia-a taxonomic and phylogenetic overview . Fungal Divers. 70 , 149 ? 187 ( 2015 ). 

  5. 5 Cortes-Perez A. , New species and records of bioluminescent Mycena from Mexico . Mycologia 111 , 319 ? 338 ( 2019 ). 30908110 

  6. 6 Kaskova Z. M. , Mechanism and color modulation of fungal bioluminescence . Sci. Adv. 3 , e1602847 ( 2017 ). 28508049 

  7. 7 Kotlobay A. A. , Genetically encodable bioluminescent system from fungi . Proc. Natl. Acad. Sci. U.S.A. 115 , 12728 ? 12732 ( 2018 ). 30478037 

  8. 8 Varga T. , Megaphylogeny resolves global patterns of mushroom evolution . Nat. Ecol. Evol. 3 , 668 ? 678 ( 2019 ). 30886374 

  9. 9 Sipos G. , Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria . Nat. Ecol. Evol. 1 , 1931 ? 1941 ( 2017 ). 29085064 

  10. 10 Floudas D. , Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii . Fungal Genet. Biol. 76 , 78 ? 92 ( 2015 ). 25683379 

  11. 11 Park Y. J. , Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation . PLoS One 9 , e93560 ( 2014 ). 24714189 

  12. 12 Liu D. , Hunt M. , Tsai I. J. , Inferring synteny between genome assemblies: A systematic evaluation . BMC Bioinf. 19 , 26 ( 2018 ). 

  13. 13 Koren S. , Canu: Scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation . Genome Res. 27 , 722 ? 736 ( 2017 ). 28298431 

  14. 14 Ranallo-Benavidez T. R. , Jaron K. S. , Schatz M. C. , GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes . Nat. Commun. 11 , 1432 ( 2020 ). 32188846 

  15. 15 Shafin K. , Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes . Nat. Biotechnol. 38 , 1044 ? 1053 ( 2020 ). 32686750 

  16. 16 Heinzelmann R. , Rigling D. , Sipos G. , Munsterkotter M. , Croll D. , Chromosomal assembly and analyses of genome-wide recombination rates in the forest pathogenic fungus Armillaria ostoyae . Heredity 124 , 699 ? 713 ( 2020 ). 32203246 

  17. 17 Perez G. , Pangilinan J. , Pisabarro A. G. , Ramirez L. , Telomere organization in the ligninolytic basidiomycete Pleurotus ostreatus . Appl. Environ. Microbiol. 75 , 1427 ? 1436 ( 2009 ). 19114509 

  18. 18 Holt C. , Yandell M. , MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects . BMC Bioinf. 12 , 491 ( 2011 ). 

  19. 19 Simao F. A. , Waterhouse R. M. , Ioannidis P. , Kriventseva E. V. , Zdobnov E. M. , BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs . Bioinformatics 31 , 3210 ? 3212 ( 2015 ). 26059717 

  20. 20 Emms D. M. , Kelly S. , OrthoFinder: Phylogenetic orthology inference for comparative genomics . Genome Biol. 20 , 238 ( 2019 ). 31727128 

  21. 21 Emms D. M. , Kelly S. , OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy . Genome Biol. 16 , 157 ( 2015 ). 26243257 

  22. 22 Duplessis S. , Obligate biotrophy features unraveled by the genomic analysis of rust fungi . Proc. Natl. Acad. Sci. U.S.A. 108 , 9166 ? 9171 ( 2011 ). 21536894 

  23. 23 Zheng A. , The evolution and pathogenic mechanisms of the rice sheath blight pathogen . Nat. Commun. 4 , 1424 ( 2013 ). 23361014 

  24. 24 Stajich J. E. , Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus) . Proc. Natl. Acad. Sci. U.S.A. 107 , 11889 ? 11894 ( 2010 ). 20547848 

  25. 25 Chung C. L. , Comparative and population genomic landscape of Phellinus noxius: A hypervariable fungus causing root rot in trees . Mol. Ecol. 26 , 6301 ? 6316 ( 2017 ). 28926153 

  26. 26 Ni P. , DeepSignal: Detecting DNA methylation state from nanopore sequencing reads using deep-learning . Bioinformatics 35 , 4586 ? 4595 ( 2019 ). 30994904 

  27. 27 Zhang X. , Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis . Cell 126 , 1189 ? 1201 ( 2006 ). 16949657 

  28. 28 Wang Y. , Wang X. , Lee T. H. , Mansoor S. , Paterson A. H. , Gene body methylation shows distinct patterns associated with different gene origins and duplication modes and has a heterogeneous relationship with gene expression in Oryza sativa (rice) . New Phytol. 198 , 274 ? 283 ( 2013 ). 23356482 

  29. 29 Montanini B. , Non-exhaustive DNA methylation-mediated transposon silencing in the black truffle genome, a complex fungal genome with massive repeat element content . Genome Biol. 15 , 411 ( 2014 ). 25091826 

  30. 30 Jones P. A. , Functions of DNA methylation: Islands, start sites, gene bodies and beyond . Nat. Rev. Genet. 13 , 484 ? 492 ( 2012 ). 22641018 

  31. 31 Elango N. , Hunt B. G. , Goodisman M. A. D. , Yi S. V. , DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera . Proc. Natl. Acad. Sci. U.S.A. 106 , 11206 ? 11211 ( 2009 ). 19556545 

  32. 32 Bewick A. J. , Diversity of cytosine methylation across the fungal tree of life . Nat. Ecol. Evol. 3 , 479 ? 490 ( 2019 ). 30778188 

  33. 33 Willing E. M. , Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation . Nat. Plants 1 , 14023 ( 2015 ). 27246759 

  34. 34 Wang H. , CG gene body DNA methylation changes and evolution of duplicated genes in cassava . Proc. Natl. Acad. Sci. U.S.A. 112 , 13729 ? 13734 ( 2015 ). 26483493 

  35. 35 Stamatakis A. , RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models . Bioinformatics 22 , 2688 ? 2690 ( 2006 ). 16928733 

  36. 36 Mirarab S. , Warnow T. , ASTRAL-II: Coalescent-based species tree estimation with many hundreds of taxa and thousands of genes . Bioinformatics 31 , i44 ? i52 ( 2015 ). 26072508 

  37. 37 Yang Z. , PAML 4: Phylogenetic analysis by maximum likelihood . Mol. Biol. Evol. 24 , 1586 ? 1591 ( 2007 ). 17483113 

  38. 38 Lupia R. , Lidgard S. , Crane P. , Comparing palynological abundance and diversity: Implications for biotic replacement during the Cretaceous angiosperm radiation . Paleobiology 25 , 305 ? 340 ( 1999 ). 

  39. 39 Yue J.-X. , Contrasting evolutionary genome dynamics between domesticated and wild yeasts . Nat. Genet. 49 , 913 ? 924 ( 2017 ). 28416820 

  40. 40 Dong S. , Raffaele S. , Kamoun S. , The two-speed genomes of filamentous pathogens: Waltz with plants . Curr. Opin. Genet. Dev. 35 , 57 ? 65 ( 2015 ). 26451981 

  41. 41 Haas B. J. , Delcher A. L. , Wortman J. R. , Salzberg S. L. , DAGchainer: A tool for mining segmental genome duplications and synteny . Bioinformatics 20 , 3643 ? 3646 ( 2004 ). 15247098 

  42. 42 Rokas A. , Wisecaver J. H. , Lind A. L. , The birth, evolution and death of metabolic gene clusters in fungi . Nat. Rev. Microbiol. 16 , 731 ? 744 ( 2018 ). 30194403 

  43. 43 Oliveira A. G. , Circadian control sheds light on fungal bioluminescence . Curr. Biol. 25 , 964 ? 968 ( 2015 ). 25802150 

  44. 44 Sharpe M. L. , Dearden P. K. , Gimenez G. , Krause K. L. , Comparative RNA seq analysis of the New Zealand glowworm Arachnocampa luminosa reveals bioluminescence-related genes . BMC Genom. 16 , 825 ( 2015 ). 

  45. 45 Fallon T. R. , Firefly genomes illuminate parallel origins of bioluminescence in beetles . eLife 7 , e36495 ( 2018 ). 30324905 

  46. 46 Desjardin D. E. , Oliveira A. G. , Stevani C. V. , Fungi bioluminescence revisited . Photochem. Photobiol. Sci. 7 , 170 ? 182 ( 2008 ). 18264584 

  47. 47 Mihail J. D. , Bioluminescence patterns among North American Armillaria species . Fungal Biol. 119 , 528 ? 537 ( 2015 ). 25986550 

  48. 48 Bermudes D. , Petersen R. H. , Nealson K. H. , Low-level bioluminescence detected in Mycena-Haematopus Basidiocarps . Mycologia 84 , 799 ? 802 ( 1992 ). 

  49. 49 Zhang B. , Horvath S. , A general framework for weighted gene co-expression network analysis . Stat. Appl. Genet. Mol. Biol. 4 , ( 2005 ). 

  50. 50 Langfelder P. , Horvath S. , WGCNA: An R package for weighted correlation network analysis . BMC Bioinf. 9 , 559 ( 2008 ). 

  51. 51 Krizsan K. , Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi . Proc. Natl. Acad. Sci. U.S.A. 116 , 7409 ? 7418 ( 2019 ). 30902897 

  52. 52 Harvey E. N. , Bioluminescence ( Academic Press , New York , 1952 ). 

  53. 53 Wassink E. C. , “ Luminescence in fungi .” in Bioluminescence in Action , Herring P. J. , Ed. ( Academic Press , London , 1978 ), pp. 171 ? 197 . 

  54. 54 De Bie T. , Cristianini N. , Demuth J. P. , Hahn M. W. , CAFE: A computational tool for the study of gene family evolution . Bioinformatics 22 , 1269 ? 1271 ( 2006 ). 16543274 

  55. 55 Mondego J. M. , A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao . BMC Genom. 9 , 548 ( 2008 ). 

  56. 56 Guijarro-Clarke C. , Holland P. W. H. , Paps J. , Widespread patterns of gene loss in the evolution of the animal kingdom . Nat. Ecol. Evol. 4 , 519 ? 523 ( 2020 ). 32094540 

  57. 57 Bowles A. M. C. , Bechtold U. , Paps J. , The origin of land plants is rooted in two bursts of genomic novelty . Curr. Biol. 30 , 530 ? 536.e2 ( 2020 ). 31956023 

  58. 58 Nagy L. G. , Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts . Nat. Commun. 5 , 4471 ( 2014 ). 25034666 

  59. 59 Marcet-Houben M. , Gabaldon T. , Evolutionary and functional patterns of shared gene neighbourhood in fungi . Nat. Microbiol. 4 , 2383 ? 2392 ( 2019 ). 31527797 

  60. 60 Weinstein P. , Delean S. , Wood T. , Austin A. D. , Bioluminescence in the ghost fungus Omphalotus nidiformis does not attract potential spore dispersing insects . IMA Fungus 7 , 229 ? 234 ( 2016 ). 27990328 

  61. 61 Chang C. C. , Chen C. Y. , Lin W. W. , Kao H. W. , Mycena jingyinga, Mycena luguensis, and Mycena venus: Three new species of bioluminescent fungi from Taiwan . Taiwania 65 , 396 ? 406 ( 2020 ). 

  62. 62 Vaser R. , Sovi I. , Nagarajan N. , ?iki M. , Fast and accurate de novo genome assembly from long uncorrected reads . Genome Res. 27 , 737 ? 746 ( 2017 ). 28100585 

  63. 63 Huang S. , Kang M. , Xu A. , HaploMerger2: Rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly . Bioinformatics 33 , 2577 ? 2579 ( 2017 ). 28407147 

  64. 64 Walker B. J. , Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement . PLoS One 9 , e112963 ( 2014 ). 25409509 

  65. 65 Koren S. , De novo assembly of haplotype-resolved genomes with trio binning . Nat. Biotechnol. 36 , 1174 ? 1182 ( 2018 ). 

  66. 66 Benson G. , Tandem repeats finder: A program to analyze DNA sequences . Nucleic Acids Res. 27 , 573 ? 580 ( 1999 ). 9862982 

  67. 67 Grigoriev I. V. , MycoCosm portal: Gearing up for 1000 fungal genomes . Nucleic Acids Res. 42 , D699 ? D704 ( 2014 ). 24297253 

  68. 68 Dobin A. , STAR: Ultrafast universal RNA-seq aligner . Bioinformatics 29 , 15 ? 21 ( 2013 ). 23104886 

  69. 69 Dobin A. , Gingeras T. R. , Mapping RNA-seq reads with STAR . Curr. Protoc. Bioinf. 51 , 11 14 11 ? 11 14 19 ( 2015 ). 

  70. 70 Haas B. J. , De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis . Nat. Protoc. 8 , 1494 ? 1512 ( 2013 ). 23845962 

  71. 71 Pertea M. , StringTie enables improved reconstruction of a transcriptome from RNA-seq reads . Nat. Biotechnol. 33 , 290 ? 295 ( 2015 ). 25690850 

  72. 72 Song L. , Sabunciyan S. , Florea L. , CLASS2: Accurate and efficient splice variant annotation from RNA-seq reads . Nucleic Acids Res. 44 , e98 ( 2016 ). 26975657 

  73. 73 Trapnell C. , Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks . Nat. Protoc. 7 , 562 ? 578 ( 2012 ). 22383036 

  74. 74 Wu T. D. , Watanabe C. K. , GMAP: A genomic mapping and alignment program for mRNA and EST sequences . Bioinformatics 21 , 1859 ? 1875 ( 2005 ). 15728110 

  75. 75 Venturini L. , Caim S. , Kaithakottil G. G. , Mapleson D. L. , Swarbreck D. , Leveraging multiple transcriptome assembly methods for improved gene structure annotation . Gigascience 7 , giy093 ( 2018 ). 

  76. 76 Stanke M. , Tzvetkova A. , Morgenstern B. , AUGUSTUS at EGASP: Using EST, protein and genomic alignments for improved gene prediction in the human genome . Genome Biol. 7 ( suppl. 1 ), S11.1 ? S11.8 ( 2006 ). 16925833 

  77. 77 Ter-Hovhannisyan V. , Lomsadze A. , Chernoff Y. O. , Borodovsky M. , Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training . Genome Res. 18 , 1979 ? 1990 ( 2008 ). 18757608 

  78. 78 Hoff K. J. , Lange S. , Lomsadze A. , Borodovsky M. , Stanke M. , BRAKER1: Unsupervised RNA-seq-based genome annotation with GeneMark-ET and AUGUSTUS . Bioinformatics 32 , 767 ? 769 ( 2016 ). 26559507 

  79. 79 Korf I. , Gene finding in novel genomes . BMC Bioinf. 5 , 59 ( 2004 ). 

  80. 80 Conesa A. , Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research . Bioinformatics 21 , 3674 ? 3676 ( 2005 ). 16081474 

  81. 81 Falda M. , Argot2: A large scale function prediction tool relying on semantic similarity of weighted gene ontology terms . BMC Bioinf. 13 ( suppl. 4 ), S14 ( 2012 ). 

  82. 82 Yin Y. , dbCAN: A web resource for automated carbohydrate-active enzyme annotation . Nucleic Acids Res. 40 , W445 ? W451 ( 2012 ). 22645317 

  83. 83 Finn R. D. , Clements J. , Eddy S. R. , HMMER web server: Interactive sequence similarity searching . Nucleic Acids Res. 39 , W29 ? W37 ( 2011 ). 21593126 

  84. 84 Berriman M. , Coghlan A. , Tsai I. J. , Creation of a comprehensive repeat library for a newly sequenced parasitic worm genome . Protoc. Exch. , 10.1038/protex.2018.054 ( 2018 ). 

  85. 85 Guo W. , BS-Seeker2: A versatile aligning pipeline for bisulfite sequencing data . BMC Genom. 14 , 774 ( 2013 ). 

  86. 86 Katoh K. , Standley D. M. , MAFFT multiple sequence alignment software version 7: Improvements in performance and usability . Mol. Biol. Evol. 30 , 772 ? 780 ( 2013 ). 23329690 

  87. 87 Kozlov A. M. , Darriba D. , Flouri T. , Morel B. , Stamatakis A. , RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference . Bioinformatics 35 , 4453 ? 4455 ( 2019 ). 31070718 

  88. 88 dos Reis M. , Yang Z. , Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times . Mol. Biol. Evol. 28 , 2161 ? 2172 ( 2011 ). 21310946 

  89. 89 Suyama M. , Torrents D. , Bork P. , PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments . Nucleic Acids Res. 34 , W609 ? W612 ( 2006 ). 16845082 

  90. 90 Kumar S. , Stecher G. , Suleski M. , Hedges S. B. , TimeTree: A resource for Timelines, Timetrees, and divergence times . Mol. Biol. Evol. 34 , 1812 ? 1819 ( 2017 ). 28387841 

  91. 91 Poinar G. O. Jr , Buckley R. , Evidence of mycoparasitism and hypermycoparasitism in Early Cretaceous amber . Mycol. Res. 111 , 503 ? 506 ( 2007 ). 17512712 

  92. 92 Cai C. , Leschen R. A. , Hibbett D. S. , Xia F. , Huang D. , Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous . Nat. Commun. 8 , 14894 ( 2017 ). 28300055 

  93. 93 Guy L. , Kultima J. R. , Andersson S. G. , genoPlotR: Comparative gene and genome visualization in R . Bioinformatics 26 , 2334 ? 2335 ( 2010 ). 20624783 

  94. 94 Bolger A. M. , Lohse M. , Usadel B. , Trimmomatic: A flexible trimmer for Illumina sequence data . Bioinformatics 30 , 2114 ? 2120 ( 2014 ). 24695404 

  95. 95 Liao Y. , Smyth G. K. , Shi W. , featureCounts: An efficient general purpose program for assigning sequence reads to genomic features . Bioinformatics 30 , 923 ? 930 ( 2014 ). 24227677 

  96. 96 Meinhardt L. W. , Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: Mechanisms of the biotrophic and necrotrophic phases . BMC Genom. 15 , 164 ( 2014 ). 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로