$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] De novo sequencing, assembly and functional annotation of Armillaria borealis genome 원문보기

BMC genomics, v.21 suppl.7, 2020년, pp.534 -   

Akulova, Vasilina S. (Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia) ,  Sharov, Vadim V. (Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia) ,  Aksyonova, Anastasiya I. (Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia) ,  Putintseva, Yuliya A. (Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia) ,  Oreshkova, Natalya V. (Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia) ,  Feranchuk, Sergey I. (Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and) ,  Kuzmin, Dmitry A. ,  Pavlov, Igor N. ,  Litovka, Yulia A. ,  Krutovsky, Konstantin V.

Abstract AI-Helper 아이콘AI-Helper

BackgroundMassive forest decline has been observed almost everywhere as a result of negative anthropogenic and climatic effects, which can interact with pests, fungi and other phytopathogens and aggravate their effects. Climatic changes can weaken trees and make fungi, such as Armillaria more destru...

Keyword

참고문헌 (48)

  1. 1. Fisher MC Henk DA Briggs CJ Brownstein JS Madoff LC McCra SL Gurr SJ Emerging fungal threats to animal, plant and ecosystem health Nature 2012 484 186 194 22498624 

  2. 2. Coetzee M Wingfield BD Wingfield MJ Armillaria root-rot pathogens: species boundaries and global distribution Pathogens 2018 7 4 83 

  3. 3. Baumgartner K Coetzee MPA Hoffmeister D Secrets of the subterranean pathosystem of Armillaria Mol Plant Pathol 2011 12 6 515 534 21722292 

  4. 4. Prospero S Holdenrieder O Rigling D Comparison of the virulence of Armillaria cepistipes and Armillaria ostoyae on four Norway spruce provenances For Pathol 2004 34 1 1 14 

  5. 5. Marcais B Breda N Role of an opportunistic pathogen in the decline of stressed oak trees J Ecol 2006 94 6 1214 1223 

  6. 6. Morrison DJ Pellow KW Variation in virulence among isolates of Armillaria ostoyae For Pathol 2002 32 2 99 107 

  7. 7. Sahu N, Merenyi Z, Balint B, Kiss B, Sipos G, Owens R, Nagy LG. Hallmarks of basidiomycete soft- and white-rot in wood-decay-omics data of Armillaria . bioRxiv preprint. 2020. 10.1101/2020.05.04.075879. 

  8. 8. Legrand P Ghahari S Guillaumin JJ Occurrence of genets of Armillaria spp . in four mountain forests in Central France: the colonization strategy of Armillaria ostoyae New Phytol 1996 133 2 321 332 29681066 

  9. 9. Omdal DW Shaw CG III Jacobi WR Wager TC Variation of pathogenicity and virulence of isolates of Armillaria ostoyae on eight tree species Plant Dis 1995 79 9 939 944 

  10. 10. Bendel M Kienast F Rigling D Genetic population structure of three Armillaria species at the landscape scale: a case study from Swiss Pinus mugo forests Mycol Res 2006 110 6 705 712 16616839 

  11. 11. Kea N Solheim H Ecology and distribution of Armillaria species in Norway For Pathol 2011 41 2 120 132 

  12. 12. Marxmuller H Holdenrieder O Armillaria mellea sl in Southern Bavaria Frontiers in mycology 1990 Wallingford, Oxon CAB International 9 32 

  13. 13. Pavlov IN Biotic and abiotic factors as causes of coniferous forests dieback in Siberia and Far East Contemp Probl Ecol 2015 8 4 440 456 

  14. 14. Cromey M Drakulic J Beal L Waghorn I Perry J Clover GR Susceptibility of garden trees and shrubs to Armillaria root rot Plant Dis 2020 104 2 483 492 31746694 

  15. 15. Drakulic J Gorton C Perez-Sierra A Clover G Beal L Associations between Armillaria species and host plants in UK gardens Plant Dis 2017 101 11 1903 1909 30677312 

  16. 16. Abdel-Hamid AM Solbiati JO Cann IKO Insights into lignin degradation and its potential industrial applications Adv Appl Microbiol 2013 82 1 28 23415151 

  17. 17. Hirsch CD Springer NM Transposable element influences on gene expression in plants Biochim Biophys Acta 2017 1860 1 157 165 

  18. 18. Ross-Davis AL Steward JE Hanna JW Kim M-S Knaus BJ Cronn R Rai H Richardson BA GI MD Klopfenstein NB Transcriptome of an Armillaria root disease pathogen reveals candidate genes involved in host substrate utilization at the host-pathogen interface For Path 2013 43 6 468 477 

  19. 19. Sipos G Prasanna AN Walter MC O’Connor E Balint B Krizsan K Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria Nat Ecol Evol 2017 1 12 1931 1941 29085064 

  20. 20. Meinhardt LW Costa GGL Thomazella DPT Thomazella DP Teixeira PJP Carazzolle MF Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri , which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases BMC Genomics 2014 15 1 164 24571091 

  21. 21. Mondego JMC Carazzolle MF Costa GG Formighieri EF Parizzi LP Rincones J Cotomacci C Carraro DM Cunha AF Carrer H Vidal RO Estrela RC Garcia O Thomazella DPT de Oliveira BV ABL P MCS R MRR A de Moraes MH Castro LAB Gramacho KP Goncalves MS Neto JPM Neto AG Barbosa LV Guiltinan MJ Bailey BA Meinhardt LW Cascardo JCM Pereira GAG A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom disease of cacao BMC Genomics 2008 9 1 548 19019209 

  22. 22. Olson A Aerts A Asiegbu F Belbahri L Bouzid O Broberg A Canback B Coutinho PM Cullen D Dalman K Deflorio G van Diepen LT Dunand C Duplessis S Durling M Gonthier P Grimwood J Fossdal CG Hansson D Henrissat B Hietala A Himmelstrand K Hoffmeister D Hogberg N James TY Karlsson M Kohler A Kues U Lee YH Lin YC Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen New Phytol 2012 194 4 1001 1013 22463738 

  23. 23. Hane JK Anderson JP Williams AH Sperschneider J Singh KB Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8 PLoS Genet 2014 10 5 e1004281 24810276 

  24. 24. Raffaele S Kamoun S Genome evolution in filamentous plant pathogens: why bigger can be better Nat Rev Microbiol 2012 10 6 417 430 22565130 

  25. 25. Muszewska A Steczkiewicz K Stepniewska-Dziubinska M Ginalski K Transposable elements contribute to fungal genes and impact fungal lifestyle Sci Report 2019 9 1 4307 

  26. 26. Moller M Stukenbrock EH Evolution and genome architecture in fungal plant pathogens Nat Rev Microbiol 2017 15 756 771 28781365 

  27. 27. Dong S Raffaele S Kamoun S The two-speed genomes of filamentous pathogens: waltz with plants Curr Opin Genet Dev 2015 35 57 65 26451981 

  28. 28. Sperschneider J Genome-wide analysis in three Fusarium pathogens identifies rapidly evolving chromosomes and genes associated with pathogenicity Genome Biol Evol 2015 7 1613 1627 25994930 

  29. 29. Faino L Seidl MF Shi-Kunne X Pauper M van den Berg GC Wittenberg AH Thomma BP Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen Genome Res 2018 26 8 1091 1100 

  30. 30. Ma L-J Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium Nature 2010 464 367 373 20237561 

  31. 31. Yoshida K Saunders DG Mitsuoka C Natsume S Kosugi S Saitoh H Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements BMC Genomics 2016 17 1 370 27194050 

  32. 32. Simao FA Waterhouse RM Ioannidis P Kriventseva EV Zdobnov EM BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs Bioinformatics. 2015 31 19 3210 3212 26059717 

  33. 33. Trapnell C Pachter L Salzberg SL TopHat: discovering splice junctions with RNA-Seq Bioinformatics. 2009 25 9 1105 1111 19289445 

  34. 34. Kopylova E Noe L Touzet H SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data Bioinformatics. 2012 28 24 3211 3217 23071270 

  35. 35. Talhinhas P Tavares D Ramos AP Goncalves S Loureiro J Validation of standards suitable for genome size estimation of fungi J Microbiol Methods 2017 142 76 78 28923689 

  36. 36. Mohanta TK Bae H The diversity of fungal genome Biol Proced Online 2015 17 8 25866485 

  37. 37. Collins C Keane TM Turner DJ O’Keeffe G Fitzpatrick DA Doyle S Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria mellea : toward a new infection model system J Proteome Res 2013 12 6 2552 2570 23656496 

  38. 38. Adejumo TO Coker ME Ogundeji JS Adejoro DO Qualitative determination of lignocellulolytic enzymes in eight wood-decomposing fungi J Nat Sci Res 2015 5 14 1 8 

  39. 39. Castanera R Borgognone A Pisabarro AG Ramirez L Biology, dynamics, and applications of transposable elements in basidiomycete fungi Appl Microbiol Biotechnol 2017 101 4 1337 1350 28074220 

  40. 40. Devey ME Bell JC Smith DN Neale DB Moran GF A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers Theor Appl Genet 1996 92 6 673 679 24166390 

  41. 41. Bankevich A Nurk S Antipov D Gurevich A Dvorkin M Kulikov AS Lesin V Nikolenko S Pham S Prjibelski A Pyshkin A Sirotkin A Vyahhi N Tesler G Alekseyev MA Pevzner PA SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing J Comput Biol 2012 19 5 455 477 22506599 

  42. 42. Hoff KJ Lange S Lomsadze A Borodovsky M Stanke M BRAKER1: unsupervised RNA-seq-based genome annotation with GeneMark-ET and AUGUSTUS Bioinformatics. 2015 32 5 767 769 26559507 

  43. 43. Lomsadze A Burns PD Borodovsky M Integration of mapped RNA-seq reads into automatic training of eukaryotic gene finding algorithm Nucleic Acids Res 2014 42 15 e119 24990371 

  44. 44. Stanke M Keller O Gunduz I Hayes A Waack S Morgenstern B AUGUSTUS: ab initio prediction of alternative transcripts Nucleic Acids Res 2006 34 Suppl. 2 W435 W439 16845043 

  45. 45. Conesa A Gotz S Garcia-Gomez JM Terol J Talon M Robles M Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research Bioinformatics. 2005 21 18 3674 3676 16081474 

  46. 46. Quevillon E Silventoinen V Pillai S Harte N Mulder N Apweiler R Lopez R InterProScan: protein domains identifier Nucleic Acids Res 2005 33 Suppl. 2 W116 W120 15980438 

  47. 47. . Smit A, Hubley R. RepeatModeler-1.0.11. Institute for Systems Biology. http://www.repeatmasker.org . 

  48. 48. Abrusan G TEclass―a tool for automated classification of unknown eukaryotic transposable elements Bioinformatics. 2009 25 10 1329 1330 19349283 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

원문 보기

원문 URL 링크

*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로