최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Proceedings of the National Academy of Sciences of the United States of America, v.118 no.2, 2021년, pp.e2021171118 - e2021171118
Kim, Gi Bae (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea) , Gao, Ye , Palsson, Bernhard O. (Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093) , Lee, Sang Yup
SignificanceIdentification of transcription factors (TFs) is a starting point for the analysis of transcriptional regulatory systems of organisms. Here, we report the development of DeepTFactor, a deep learning-based tool that predicts TFs using protein sequences as inputs. We interpreted the reason...
Wilson, Derek, Charoensawan, Varodom, Kummerfeld, Sarah K., Teichmann, Sarah A.. DBD––taxonomically broad transcription factor predictions: new content and functionality. Nucleic acids research, vol.36, no.suppl1, D88-D92.
Ortet, Philippe, De Luca, Gilles, Whitworth, David E, Barakat, Mohamed. P2TF: a comprehensive resource for analysis of prokaryotic transcription factors. BMC genomics, vol.13, 628-628.
Lambert, Samuel A., Jolma, Arttu, Campitelli, Laura F., Das, Pratyush K., Yin, Yimeng, Albu, Mihai, Chen, Xiaoting, Taipale, Jussi, Hughes, Timothy R., Weirauch, Matthew T.. The Human Transcription Factors. Cell, vol.172, no.4, 650-665.
Zheng, Guangyong, Qian, Ziliang, Yang, Qing, Wei, Chaochun, Xie, Lu, Zhu, Yangyong, Li, Yixue. The combination approach of SVM and ECOC for powerful identification and classification of transcription factor. BMC bioinformatics, vol.9, 282-282.
Eichner, Johannes, Topf, Florian, Dräger, Andreas, Wrzodek, Clemens, Wanke, Dierk, Zell, Andreas. TFpredict and SABINE: Sequence-Based Prediction of Structural and Functional Characteristics of Transcription Factors. PloS one, vol.8, no.12, e82238-.
LeCun, Yann, Bengio, Yoshua, Hinton, Geoffrey. Deep learning. Nature, vol.521, no.7553, 436-444.
Angermueller, Christof, Pärnamaa, Tanel, Parts, Leopold, Stegle, Oliver. Deep learning for computational biology. Molecular systems biology, vol.12, no.7, 878-.
Kim, Gi Bae, Kim, Won Jun, Kim, Hyun Uk, Lee, Sang Yup. Machine learning applications in systems metabolic engineering. Current opinion in biotechnology, vol.64, 1-9.
Zou, James, Huss, Mikael, Abid, Abubakar, Mohammadi, Pejman, Torkamani, Ali, Telenti, Amalio. A primer on deep learning in genomics. Nature genetics, vol.51, no.1, 12-18.
Ryu, Jae Yong, Kim, Hyun Uk, Lee, Sang Yup. Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proceedings of the National Academy of Sciences of the United States of America, vol.116, no.28, 13996-14001.
Azodi, Christina B., Tang, Jiliang, Shiu, Shin-Han. Opening the Black Box: Interpretable Machine Learning for Geneticists. Trends in genetics, vol.36, no.6, 442-455.
K. Simonyan A. Vedaldi A. Zisserman Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv:1312.6034 (20 December 2013).
J. T. Springenberg A. Dosovitskiy T. Brox M. Riedmiller Striving for simplicity: The all convolutional net. arXiv:1412.6806 (13 April 2015).
M. Sundararajan A. Taly Q. Yan Axiomatic attribution for deep networks. arXiv:1703.01365 (13 June 2017).
Selvaraju, Ramprasaath R., Cogswell, Michael, Das, Abhishek, Vedantam, Ramakrishna, Parikh, Devi, Batra, Dhruv. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. International journal of computer vision, vol.128, no.2, 336-359.
Ghanbari, Mahsa, Ohler, Uwe. Deep neural networks for interpreting RNA-binding protein target preferences. Genome research, vol.30, no.2, 214-226.
Y. Du J. Meier J. Ma R. Fergus A. Rives Energy-based models for atomic-resolution protein conformations. arXiv:2004.13167 (27 April 2020).
UniProt: a worldwide hub of protein knowledge. Nucleic acids research, vol.47, no.d1, D506-D515.
Ghatak, Sankha, King, Zachary A, Sastry, Anand, Palsson, Bernhard O. The y-ome defines the 35% of Escherichia coli genes that lack experimental evidence of function. Nucleic acids research, vol.47, no.5, 2446-2454.
Santos-Zavaleta, Alberto, Salgado, Heladia, Gama-Castro, Socorro, Sánchez-Pérez, Mishael, Gómez-Romero, Laura, Ledezma-Tejeida, Daniela, García-Sotelo, Jair Santiago, Alquicira-Hernández, Kevin, Muñiz-Rascado, Luis José, Peña-Loredo, Pablo, Ishida-Gutiérrez, Cecilia, Velázquez-Ramírez, David A, Del Moral-Chávez, Víctor, Bonavides-Martínez, César, Méndez-Cruz, Carlos-Francisco, Galagan, James, Collado-Vides, Julio. RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli K-12. Nucleic acids research, vol.47, no.d1, D212-D220.
Nucleic Acids Res. Gao Y. 10682 46 2018 Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655 Y. Gao ., Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655. Nucleic Acids Res. 46, 10682-10696 (2018).
Gough, Julian, Karplus, Kevin, Hughey, Richard, Chothia, Cyrus. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. Journal of molecular biology, vol.313, no.4, 903-919.
de Castro, Edouard, Sigrist, Christian J. A., Gattiker, Alexandre, Bulliard, Virginie, Langendijk-Genevaux, Petra S., Gasteiger, Elisabeth, Bairoch, Amos, Hulo, Nicolas. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic acids research, vol.34, no.suppl2, W362-W365.
Turner, Peter C., Miller, Elliot N., Jarboe, Laura R., Baggett, Christy L., Shanmugam, K. T., Ingram, Lonnie O.. YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance. Journal of industrial microbiology & biotechnology, vol.38, no.3, 431-439.
Jiang, Weining, Hou, Yan, Inouye, Masayori. CspA, the Major Cold-shock Protein of Escherichia coli, Is an RNA Chaperone. The Journal of biological chemistry, vol.272, no.1, 196-202.
Ogasawara, Hiroshi, Ishizuka, Toshiyuki, Hotta, Shuhei, Aoki, Michiko, Shimada, Tomohiro, Ishihama, Akira. Novel regulators of the csgD gene encoding the master regulator of biofilm formation in Escherichia coli K-12. Microbiology, vol.166, no.9, 880-890.
O'Toole, George, Kaplan, Heidi B., Kolter, Roberto. BIOFILM FORMATION AS MICROBIAL DEVELOPMENT. Annual review of microbiology, vol.54, 49-79.
Genevaux, P., Bauda, Pascale, DuBow, Michael S., Oudega, Bauke. Identification of Tn 10 insertions in the rfaG , rfaP , and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion. Archives of microbiology, vol.172, no.1, 1-8.
Ma, Jianzhu, Yu, Michael Ku, Fong, Samson, Ono, Keiichiro, Sage, Eric, Demchak, Barry, Sharan, Roded, Ideker, Trey. Using deep learning to model the hierarchical structure and function of a cell. Nature methods, vol.15, no.4, 290-298.
J. Adebayo . Sanity checks for saliency maps. arXiv:1810.03292 (28 October 2018).
Strodthoff, Nils, Wagner, Patrick, Wenzel, Markus, Samek, Wojciech. UDSMProt: universal deep sequence models for protein classification. Bioinformatics, vol.36, no.8, 2401-2409.
A. Shrikumar P. Greenside A. Kundaje Learning important features through propagating activation differences. arXiv:1704.02685 (10 April 2017).
Kavvas, Erol S., Yang, Laurence, Monk, Jonathan M., Heckmann, David, Palsson, Bernhard O.. A biochemically-interpretable machine learning classifier for microbial GWAS. Nature communications, vol.11, no.1, 2580-.
Svensson, Valentine, Gayoso, Adam, Yosef, Nir, Pachter, Lior. Interpretable factor models of single-cell RNA-seq via variational autoencoders. Bioinformatics, vol.36, no.11, 3418-3421.
S. Jetley N. A. Lord N. Lee P. H. S. Torr Learn to pay attention. arXiv:1804.02391 (6 April 2018).
Chen, Lifan, Tan, Xiaoqin, Wang, Dingyan, Zhong, Feisheng, Liu, Xiaohong, Yang, Tianbiao, Luo, Xiaomin, Chen, Kaixian, Jiang, Hualiang, Zheng, Mingyue. TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics, vol.36, no.16, 4406-4414.
Valeri, Jacqueline A., Collins, Katherine M., Ramesh, Pradeep, Alcantar, Miguel A., Lepe, Bianca A., Lu, Timothy K., Camacho, Diogo M.. Sequence-to-function deep learning frameworks for engineered riboregulators. Nature communications, vol.11, no.1, 5058-.
Tareen, Ammar, Kinney, Justin B. Logomaker: beautiful sequence logos in Python. Bioinformatics, vol.36, no.7, 2272-2274.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.