$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] DeepTFactor: A deep learning-based tool for the prediction of transcription factors 원문보기

Proceedings of the National Academy of Sciences of the United States of America, v.118 no.2, 2021년, pp.e2021171118 - e2021171118  

Kim, Gi Bae (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea) ,  Gao, Ye ,  Palsson, Bernhard O. (Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093) ,  Lee, Sang Yup

Abstract AI-Helper 아이콘AI-Helper

SignificanceIdentification of transcription factors (TFs) is a starting point for the analysis of transcriptional regulatory systems of organisms. Here, we report the development of DeepTFactor, a deep learning-based tool that predicts TFs using protein sequences as inputs. We interpreted the reason...

Keyword

참고문헌 (39)

  1. Wilson, Derek, Charoensawan, Varodom, Kummerfeld, Sarah K., Teichmann, Sarah A.. DBD––taxonomically broad transcription factor predictions: new content and functionality. Nucleic acids research, vol.36, no.suppl1, D88-D92.

  2. Ortet, Philippe, De Luca, Gilles, Whitworth, David E, Barakat, Mohamed. P2TF: a comprehensive resource for analysis of prokaryotic transcription factors. BMC genomics, vol.13, 628-628.

  3. Lambert, Samuel A., Jolma, Arttu, Campitelli, Laura F., Das, Pratyush K., Yin, Yimeng, Albu, Mihai, Chen, Xiaoting, Taipale, Jussi, Hughes, Timothy R., Weirauch, Matthew T.. The Human Transcription Factors. Cell, vol.172, no.4, 650-665.

  4. Zheng, Guangyong, Qian, Ziliang, Yang, Qing, Wei, Chaochun, Xie, Lu, Zhu, Yangyong, Li, Yixue. The combination approach of SVM and ECOC for powerful identification and classification of transcription factor. BMC bioinformatics, vol.9, 282-282.

  5. Eichner, Johannes, Topf, Florian, Dräger, Andreas, Wrzodek, Clemens, Wanke, Dierk, Zell, Andreas. TFpredict and SABINE: Sequence-Based Prediction of Structural and Functional Characteristics of Transcription Factors. PloS one, vol.8, no.12, e82238-.

  6. LeCun, Yann, Bengio, Yoshua, Hinton, Geoffrey. Deep learning. Nature, vol.521, no.7553, 436-444.

  7. Angermueller, Christof, Pärnamaa, Tanel, Parts, Leopold, Stegle, Oliver. Deep learning for computational biology. Molecular systems biology, vol.12, no.7, 878-.

  8. Kim, Gi Bae, Kim, Won Jun, Kim, Hyun Uk, Lee, Sang Yup. Machine learning applications in systems metabolic engineering. Current opinion in biotechnology, vol.64, 1-9.

  9. Zou, James, Huss, Mikael, Abid, Abubakar, Mohammadi, Pejman, Torkamani, Ali, Telenti, Amalio. A primer on deep learning in genomics. Nature genetics, vol.51, no.1, 12-18.

  10. Ryu, Jae Yong, Kim, Hyun Uk, Lee, Sang Yup. Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proceedings of the National Academy of Sciences of the United States of America, vol.116, no.28, 13996-14001.

  11. Azodi, Christina B., Tang, Jiliang, Shiu, Shin-Han. Opening the Black Box: Interpretable Machine Learning for Geneticists. Trends in genetics, vol.36, no.6, 442-455.

  12. K. Simonyan A. Vedaldi A. Zisserman Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv:1312.6034 (20 December 2013). 

  13. J. T. Springenberg A. Dosovitskiy T. Brox M. Riedmiller Striving for simplicity: The all convolutional net. arXiv:1412.6806 (13 April 2015). 

  14. 10.1109/CVPR.2016.319 B. Zhou A. Khosla A. Lapedriza A. Oliva A. Torralba “Learning deep features for discriminative localization” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE Computer Society Los Alamitos CA 2016) pp. 2921-2929. 

  15. M. Sundararajan A. Taly Q. Yan Axiomatic attribution for deep networks. arXiv:1703.01365 (13 June 2017). 

  16. Selvaraju, Ramprasaath R., Cogswell, Michael, Das, Abhishek, Vedantam, Ramakrishna, Parikh, Devi, Batra, Dhruv. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. International journal of computer vision, vol.128, no.2, 336-359.

  17. Ghanbari, Mahsa, Ohler, Uwe. Deep neural networks for interpreting RNA-binding protein target preferences. Genome research, vol.30, no.2, 214-226.

  18. Y. Du J. Meier J. Ma R. Fergus A. Rives Energy-based models for atomic-resolution protein conformations. arXiv:2004.13167 (27 April 2020). 

  19. UniProt: a worldwide hub of protein knowledge. Nucleic acids research, vol.47, no.d1, D506-D515.

  20. Ghatak, Sankha, King, Zachary A, Sastry, Anand, Palsson, Bernhard O. The y-ome defines the 35% of Escherichia coli genes that lack experimental evidence of function. Nucleic acids research, vol.47, no.5, 2446-2454.

  21. Santos-Zavaleta, Alberto, Salgado, Heladia, Gama-Castro, Socorro, Sánchez-Pérez, Mishael, Gómez-Romero, Laura, Ledezma-Tejeida, Daniela, García-Sotelo, Jair Santiago, Alquicira-Hernández, Kevin, Muñiz-Rascado, Luis José, Peña-Loredo, Pablo, Ishida-Gutiérrez, Cecilia, Velázquez-Ramírez, David A, Del Moral-Chávez, Víctor, Bonavides-Martínez, César, Méndez-Cruz, Carlos-Francisco, Galagan, James, Collado-Vides, Julio. RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli K-12. Nucleic acids research, vol.47, no.d1, D212-D220.

  22. Nucleic Acids Res. Gao Y. 10682 46 2018 Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655 Y. Gao ., Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655. Nucleic Acids Res. 46, 10682-10696 (2018). 

  23. Gough, Julian, Karplus, Kevin, Hughey, Richard, Chothia, Cyrus. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. Journal of molecular biology, vol.313, no.4, 903-919.

  24. de Castro, Edouard, Sigrist, Christian J. A., Gattiker, Alexandre, Bulliard, Virginie, Langendijk-Genevaux, Petra S., Gasteiger, Elisabeth, Bairoch, Amos, Hulo, Nicolas. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic acids research, vol.34, no.suppl2, W362-W365.

  25. Turner, Peter C., Miller, Elliot N., Jarboe, Laura R., Baggett, Christy L., Shanmugam, K. T., Ingram, Lonnie O.. YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance. Journal of industrial microbiology & biotechnology, vol.38, no.3, 431-439.

  26. Jiang, Weining, Hou, Yan, Inouye, Masayori. CspA, the Major Cold-shock Protein of Escherichia coli, Is an RNA Chaperone. The Journal of biological chemistry, vol.272, no.1, 196-202.

  27. Ogasawara, Hiroshi, Ishizuka, Toshiyuki, Hotta, Shuhei, Aoki, Michiko, Shimada, Tomohiro, Ishihama, Akira. Novel regulators of the csgD gene encoding the master regulator of biofilm formation in Escherichia coli K-12. Microbiology, vol.166, no.9, 880-890.

  28. O'Toole, George, Kaplan, Heidi B., Kolter, Roberto. BIOFILM FORMATION AS MICROBIAL DEVELOPMENT. Annual review of microbiology, vol.54, 49-79.

  29. Genevaux, P., Bauda, Pascale, DuBow, Michael S., Oudega, Bauke. Identification of Tn 10 insertions in the rfaG , rfaP , and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion. Archives of microbiology, vol.172, no.1, 1-8.

  30. Ma, Jianzhu, Yu, Michael Ku, Fong, Samson, Ono, Keiichiro, Sage, Eric, Demchak, Barry, Sharan, Roded, Ideker, Trey. Using deep learning to model the hierarchical structure and function of a cell. Nature methods, vol.15, no.4, 290-298.

  31. J. Adebayo . Sanity checks for saliency maps. arXiv:1810.03292 (28 October 2018). 

  32. Strodthoff, Nils, Wagner, Patrick, Wenzel, Markus, Samek, Wojciech. UDSMProt: universal deep sequence models for protein classification. Bioinformatics, vol.36, no.8, 2401-2409.

  33. A. Shrikumar P. Greenside A. Kundaje Learning important features through propagating activation differences. arXiv:1704.02685 (10 April 2017). 

  34. Kavvas, Erol S., Yang, Laurence, Monk, Jonathan M., Heckmann, David, Palsson, Bernhard O.. A biochemically-interpretable machine learning classifier for microbial GWAS. Nature communications, vol.11, no.1, 2580-.

  35. Svensson, Valentine, Gayoso, Adam, Yosef, Nir, Pachter, Lior. Interpretable factor models of single-cell RNA-seq via variational autoencoders. Bioinformatics, vol.36, no.11, 3418-3421.

  36. S. Jetley N. A. Lord N. Lee P. H. S. Torr Learn to pay attention. arXiv:1804.02391 (6 April 2018). 

  37. Chen, Lifan, Tan, Xiaoqin, Wang, Dingyan, Zhong, Feisheng, Liu, Xiaohong, Yang, Tianbiao, Luo, Xiaomin, Chen, Kaixian, Jiang, Hualiang, Zheng, Mingyue. TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics, vol.36, no.16, 4406-4414.

  38. Valeri, Jacqueline A., Collins, Katherine M., Ramesh, Pradeep, Alcantar, Miguel A., Lepe, Bianca A., Lu, Timothy K., Camacho, Diogo M.. Sequence-to-function deep learning frameworks for engineered riboregulators. Nature communications, vol.11, no.1, 5058-.

  39. Tareen, Ammar, Kinney, Justin B. Logomaker: beautiful sequence logos in Python. Bioinformatics, vol.36, no.7, 2272-2274.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로