$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

MicroRNAs as novel bioactive components of human breastmilk 원문보기

Postępy higieny i medycyny doświadczalnej, v.74, 2020년, pp.103 - 115  

Jakubek, Patrycja (Katedra Chemii, Technologii i Biotechnologii Ż) ,  Cieślewicz, Joanna (ywnoś) ,  Bartoszek, Agnieszka (ci, Wydział Chemiczny, Politechnika Gdań)

Abstract AI-Helper 아이콘AI-Helper

MicroRNAs are short, non-coding oligonucleotides that regulate gene expression at the post-transcriptional level. These small molecules participate in the control of various cellular processes and signalling pathways. Since 2010 microRNAs have been recognized as a new bioactive component of breastmi...

참고문헌 (101)

  1. Alsaweed M., Hartmann P.E., Geddes D.T., Kakulas F.: MicroRNAsin breastmilk and the lactating breast: Potential immunoprotectorsand developmental regulators for the infant and the mother. Int. J.Environ. Res. Public Health, 2015; 12: 13981-14020 2 Alsaweed M., Hepworth A.R., Lefèvre C., Hartmann P.E., GeddesD.T., Hassiotou F.: Human milk microRNA and total RNA differdepending on milk fractionation. J. Cell. Biochem., 2015; 116:2397-2407 

  2. cells and rat small intestinal IEC-6 cells. J. Nutr., 2015; 145: 2201-2206 

  3. 10.1371/journal.pone.0152610 Alsaweed M., Lai C.T., Hartmann P.E., Geddes D.T., Kakulas F.:Human milk cells and lipids conserve numerous known and novelmiRNAs, some of which are differentially expressed during lactation.PLoS One, 2016; 11: e0152610 

  4. Alsaweed M., Lai C.T., Hartmann P.E., Geddes D.T., Kakulas F.: Humanmilk cells contain numerous miRNAs that may change withmilk removal and regulate multiple physiological processes. Int. J.Mol. Sci., 2016; 17: 956 

  5. Alsaweed M., Lai C.T., Hartmann P.E., Geddes D.T., Kakulas F.: Humanmilk miRNAs primarily originate from the mammary gland resultingin unique miRNA profiles of fractionated milk. Sci. Rep., 2016; 6: 20680 

  6. Baier S.R., Nguyen C., Xie F., Wood J.R., Zempleni J.: MicroRNAsare absorbed in biologically meaningful amounts from nutritionallyrelevant doses of cow milk and affect gene expression in peripheralblood mononuclear cells, HEK-293 kidney cell cultures, and mouselivers. J. Nutr., 2014; 144: 1495-1500 

  7. Barh D., Malhotra R., Ravi B., Sindhurani P.: MicroRNA let-7: Anemerging next-generation cancer therapeutic. Curr. Oncol., 2010;17: 70-80 8 Carney M.C., Tarasiuk A., DiAngelo S.L., Silveyra P., Podany A.,Birch L.L., Paul I.M., Kelleher S., Hicks S.D.: Metabolism-related microRNAsin maternal breast milk are influenced by premature delivery.Pediatr. Res., 2017; 82: 226-236 

  8. 10.1155/2015/409596 Mediators Inflammation, 2015; 2015: 629862 

  9. Catassi C., Bonucci A., Coppa G.V., Carlucci A., Giorgi P.L.: Intestinalpermeability changes during the first month: effect of natural versusartificial feeding. J. Pediatr. Gastroenterol. Nutr., 1995; 21: 383-386 

  10. Chan S.Y., Snow J.W.: Formidable challenges to the notion ofbiologically important roles for dietary small RNAs in ingestingmammals. Genes Nutr., 2017; 12: 13 

  11. 10.5604/17322693.1218180 Chaszczewska-Markowska M., Sagan M., Bogunia-Kubik K.:Układ renina-angiotensyna-aldosteron (RAA) - fizjologia i molekularnemechanizmy funkcjonowania. Postępy Hig. Med. Dośw.,2016; 70: 917-927 

  12. Chen X., Gao C., Li H., Huang L., Sun Q., Dong Y., Tian C., Gao S.,Dong H., Guan D., Hu X., Zhao S., Li L., Zhu L., Yan Q. i wsp.: Identificationand characterization of microRNAs in raw milk during differentperiods of lactation, commercial fluid, and powdered milkproducts. Cell Res., 2010; 20: 1128-1137 

  13. Chen Z., Luo J., Sun S., Cao D., Shi H., Loor J.J.: miR-148a and miR-17-5p synergistically regulate milk TAG synthesis via PPARGC1A andPPARA in goat mammary epithelial cells. RNA Biol., 2017; 14: 326-338 

  14. Cochrane D.R., Spoelstra N.S., Richer J.K.: The role of miRNAs inprogesterone action. Mol. Cell. Endocrinol., 2012; 357: 50-59 

  15. 10.1074/jbc.R115.708842 De Candia P., De Rosa V., Casiraghi M., Matarese G.: ExtracellularRNAs: A secret arm of immune system regulation. J. Biol. Chem.,2016; 291: 7221-7228 

  16. Do D.N., Dudemaine P.L., Li R., Ibeagha-Awemu E.M.: Co-expressionnetwork and pathway analyses reveal important modulesof miRNAs regulating milk yield and component traits. Int. J. Mol.Sci., 2017; 18: 1560 

  17. Do D.N., Li R., Dudemaine P.L., Ibeagha-Awemu E.M.: MicroRNAroles in signalling during lactation: an insight from differential expression,time course and pathway analyses of deep sequence data.Sci. Rep., 2017; 7: 44605 

  18. 10.1261/rna.972008 Duursma A.M., Kedde M., Schrier M., le Sage C., Agami R.: miR-148targets human DNMT3b protein coding region. RNA, 2008; 14: 872-877 

  19. Dziedzic M., Orłowska E., Powrózek T., Solski J.: Role of circulatingmicroRNA in hemodialyzed patients. Postępy Hig. Med. Dośw.,2016; 70: 1362-1366 

  20. 10.1186/1471-2407-11-108 Escrevente C., Keller S., Altevogt P., Costa J.: Interaction and uptakeof exosomes by ovarian cancer cells. BMC Cancer, 2011; 11: 108 

  21. 10.1073/pnas.0407729102 Estève P.O., Chin H.G., Pradhan S.: Human maintenance DNA(cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proc. Natl. Acad. Sci. USA, 2005; 102: 1000-1005 

  22. Fernández-Hernando C., Suárez Y., Rayner K.J., Moore K.J.: MicroRNAsin lipid metabolism. Curr. Opin. Lipidol., 2011; 22: 86-92 

  23. Ferraro L., Ravo M., Nassa G., Tarallo R., De Filippo M.R., GiuratoG., Cirillo F., Stellato C., Silvestro S., Cantarella C., Rizzo F., CiminoD., Friard O., Biglia N., De Bortoli M. i wsp.: Effects of oestrogen onmicroRNA expression in hormone-responsive breast cancer cells.Horm. Cancer., 2012; 3: 65-78 

  24. Floris I., Kraft J.D., Altosaar I.: Roles of microRNA across prenataland postnatal periods. Int. J. Mol. Sci, 2016; 17: 1994 

  25. 10.3390/metabo7020021 Flöter J., Kaymak I., Schulze A.: Regulation of metabolic activityby p53. Metabolites, 2017; 7: 21 

  26. 10.1101/gr.082701.108 Friedman R.C., Farh K.K., Burge C.B., Bartel D.P.: Most mammalianmRNAs are conserved targets of microRNAs. Genome Res.,2009; 19: 92-105 

  27. Golan-Gerstl R., Shiff Y.E., Moshayoff V., Schecter D., LeshkowitzD., Reif S.: Characterization and biological function of milk-derivedmiRNAs. Mol. Nutr. Food Res., 2017; 61: 1700009 

  28. Gonzalez-Martin A., Adams B.D., Lai M., Shepherd J., Salvador-Bernaldez M., Salvador J.M., Lu J., Nemazee D., Xiao C.: The microRNAmiR-148a functions as a critical regulator of B cell tolerance andautoimmunity. Nat. Immunol., 2016; 17: 433-440 

  29. 10.1159/000342776 Goossens G.H.: The renin-angiotensin system in the pathophysiologyof type 2 diabetes. Obes. Facts, 2012; 5: 611-624 

  30. 10.1007/978-3-0348-0955-9_7 Grasso M., Piscopo P., Crestini A., Confaloni A., Denti M.A.: CirculatingmicroRNAs in neurodegenerative diseases. Exp. Suppl.,2015; 106: 151-169 

  31. Grenda A., Budzyński M., Filp A.A.: Biogeneza cząsteczek mikroRNAoraz ich znaczenie w powstawaniu i przebiegu wybranych zaburzeńhematologicznych. Postępy Hig. Med. Dośw., 2013; 67: 174-185 

  32. 10.1371/journal.pone.0043691 Gu Y., Li M., Wang T., Liang Y., Zhong Z., Wang X. Zhou Q., ChenL., Lang Q., He Z., Chen X., Gong J., Gao X., Li X., Lv X.: Lactation-relatedmicroRNA expression profiles of porcine breast milk exosomes.PLoS One, 2012; 7: e43691 

  33. Hallberg L., Rossander-Hultén L., Brune M., Gleerup A.: Bioavailabilityin man of iron in human milk and cow’s milk in relation totheir calcium contents. Pediatr. Res., 1992; 31: 524-527 

  34. 10.1002/stem.1188 Hassiotou F., Beltran A., Chetwynd E., Stuebe A.M., Twigger A.J.,Metzger P., Trengove N., Lai C.T., Filgueira L., Blancafort P., HartmannP.E.: Breastmilk is a novel source of stem cells with multilineage differentiationpotential. Stem Cells, 2012; 30: 2164-2174 

  35. Hassiotou F., Geddes D.T.: Immune cell-mediated protectionof the mammary gland and the infant during breastfeeding. Adv.Nutr., 2015; 6: 267-275 

  36. Hassiotou F., Hepworth A.R., Beltran A.S., Mathews M.M., StuebeA.M., Hartmann P.E., Filgueira L., Blancafort P.: Expression of thepluripotency transcription factor OCT4 in the normal and aberrantmammary gland. Front. Oncol., 2013; 3: 79 

  37. 10.1038/cti.2013.1 Hassiotou F., Hepworth A.R., Metzger P., Lai C.T., Trengove N., HartmannP.E., Filgueira L.: Maternal and infant infections stimulate a rapidleukocyte response in breastmilk. Clin. Transl. Immunol., 2013; 2: e3 

  38. 10.1371/journal.pone.0078232 Hassiotou F., Hepworth A.R., Williams T.M., Twigger A.J., PerrellaS., Lai C.T., Filgueira L., Geddes D.T., Hartmann P.E.: Breastmilkcell and fat contents respond similarly to removal of breastmilk bythe infant. PLoS One, 2013; 8: e78232 

  39. 10.1096/fasebj.29.1_supplement.121.2 Hassiotou F., Mobley A., Geddes D., Hartmann P., Wilkie T.:Breastmilk imparts the mother’s stem cells to the infant. FASEB J.,2015; 29: 876-878 

  40. Hermann A., Goyal R., Jeltsch A.: The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preferencefor hemimethylated target sites. J. Biol. Chem., 2004; 279:48350-48359 

  41. Herrington J., Carter-Su C.: Signaling pathways activated by thegrowth hormone receptor. Trends Endocrinol. Metab., 2001; 12: 252-257 

  42. Hill P.D., Aldag J.C., Demirtas H., Naeem V., Parker N.P., ZinamanM.J., Chatterton R.T. Jr.: Association of serum prolactin and oxytocinwith milk production in mothers of preterm and term infants. Biol.Res. Nurs., 2009; 10: 340-349 

  43. 10.1136/bmj.39521.566296.BE Hoddinott P., Tappin D., Wright C.: Breast feeding. BMJ, 2008;336: 881-887 

  44. 10.1073/pnas.132268899 Hoh J., Jin S., Parrado T., Edington J., Levine A.J., Ott J.: Thep53MH algorithm and its application in detecting p53-responsivegenes. Proc. Natl. Acad. Sci. USA, 2002; 99: 8467-8472 

  45. Hong Z., Hong H., Liu J., Zheng X., Huang M., Li C., Xia J.: miR-106a is downregulated in peripheral blood mononuclear cells ofchronic hepatitis B and associated with enhanced levels of interleukin- 

  46. Howard K.M., Kusuma R.J., Baier S.R., Friemel T., Markham L.,Vanamala J., Zempleni J.: Loss of miRNAs during processing and storageof cow’s (Bos taurus) milk. J. Agric. Food Chem., 2015; 63: 588-592 

  47. Huang H.C., Yu H.R., Huang L.T., Huang H.C., Chen R.F., Lin I.C.,Ou C.Y., Hsu T.Y., Yang K.D.: miRNA-125b regulates TNF-α productionin CD14+ neonatal monocytes via post-transcriptional regulation. J.Leukoc. Biol., 2012; 92: 171-182 

  48. Imoto I., Pimkhaokham A., Watanabe T., Saito-Ohara F., SoedaE., Inazawa J.: Amplification and overexpression of TGIF2, a novelhomeobox gene of the TALE superclass, in ovarian cancer cell lines.Biochem. Biophys. Res. Commun., 2000; 276: 264-270 

  49. Kahn S., Liao Y., Du X., Xu W., Li J., Lönnerdal B.: Exosomal microRNAsin milk from mothers delivering preterm infants survivein vitro digestion and are taken up by human intestinal cells. Mol.Nutr. Food Res., 2018; 62: 1701050 

  50. 10.1186/1758-907X-1-7 Kosaka N., Izumi H., Sekine K., Ochiya T.: MicroRNA as a newimmune-regulatory agent in breast milk. Silence, 2010; 1: 7 

  51. 10.1093/nar/gkt1181 Kozomara A., Griffiths-Jones S.: miRBase: Annotating high confidencemicroRNAs using deep sequencing data. Nucleic Acids Res.,2014; 42: D68-D73 

  52. 10.1016/j.earlhumdev.2010.08.005 Kramer M.S.: “Breast is best”: The evidence. Early Hum. Dev.,2010; 86: 729-732 

  53. 10.1002/14651858.CD003517.pub2 Kramer M.S., Kakuma R.: Optimal duration of exclusive breastfeeding.Cochrane Database Syst. Rev., 2012; 2012: CD003517 

  54. Kulski J.K., Hartmann P.E.: Milk insulin GH and TSH: Relationshipto changes in milk lactose, glucose and protein during lactogenesisin women. Endocrinol. Exp., 1983; 17: 317-326 

  55. Kunz C., Rudloff S., Baier W., Klein N., Strobel S.: Oligosacchariesin human milk: Structural, functional, and metabolic aspects. Annu.Rev. Nutr., 2000; 20: 699-722 

  56. Laskowska J., Książyk J.: Aktualne wytyczne dotyczące karmieniapiersią. Pediatr. Med. Rodz., 2011; 7: 110-114 

  57. Le M.T., Teh C., Shyh-Chang N., Xie H., Zhou B., Korzh V., LodishH.F., Lim B.: MicroRNA-125b is a novel negative regulator of p53.Genes Dev., 2009; 23: 862-876 

  58. Le Huërou-Luron I., Blat S., Boudry G.: Breast- v. formula-feeding:impacts on the digestive tract and immediate and long-term healtheffects. Nutr. Res. Rev., 2010; 23: 23-36 

  59. Lemons J.A., Moye L., Hall D., Simmons M.: Differences in thecomposition of preterm and term human milk during early lactation.Pediatr. Res., 1982; 16: 113-117 

  60. Li J., Chen L., Tang Q., Wu W., Gu H., Liu L., Wu J., Jiang H., DingH., Xia Y., Chen D., Hu Y., Wang X.: The role, mechanism and potentiallynovel biomarker of microRNA-17-92 cluster in macrosomia.Sci. Rep., 2015; 5: 17212 

  61. Li J., Song Y., Wang Y., Luo J., Yu W.: MicroRNA-148a suppressesepithelial-to-mesenchymal transition by targeting ROCK1 in nonsmallcell lung cancer cells. Mol. Cell. Biochem., 2013; 380: 277-282 

  62. 10.1371/journal.pone.0154129 Li R., Dudemaine P.L., Zhao X., Lei C., Ibeagha-Awemu E.M.:Comparative analysis of the miRNome of bovine milk fat, whey andcells. PLoS One, 2016; 11: e0154129 

  63. Liao Y., Du X., Li J., Lönnerdal B.: Human milk exosomes and theirmicroRNAs survive digestion in vitro and are taken up by humanintestinal cells. Mol. Nutr. Food Res., 2017; 61: 1700082 

  64. Lu Y., Li Z., Xie B., Song Y., Ye X., Liu P.: hsa-miR-20-5p attenuatesallergic inflammation in HMC-1 cells by targeting HDAC4. Mol.Immunol., 2019; 107: 84-90 

  65. 10.2174/138920210793175895 MacFarlane L.A., Murphy P.R.: MicroRNA: Biogenesis, functionand role in cancer. Curr. Genomics, 2010; 11: 537-561 

  66. Malkaram S.A., Hassan Y.I., Zempleni J.: Online tools for bioinformaticsanalyses in nutrition sciences. Adv. Nutr., 2012; 3: 654-665 

  67. 10.1016/j.jprot.2010.06.006 Mathivanan S., Ji H., Simpson R.J.: Exosomes: Extracellular organellesimportant in intercellular communication. J. Proteomics,2010; 73: 1907-1920 

  68. Melnik B.C., Schmitz G.: MicroRNAs: Milk’s epigenetic regulators.Best Pract. Res. Clin. Endocrinol. Metab., 2017; 31: 427-442 

  69. 10.1210/en.2011-1109 Meunier L., Siddeek B., Vega A., Lakhdari N., Inoubli L., BellonR.P., Lemaire G., Mauduit C., Benahmed M.: Perinatal programmingof adult rat germ cell death after exposure to xenoestrogens: roleof microRNA miR-29 family in the down-regulation of DNA methyltransferasesand Mc1-1. Endocrinology, 2012; 153: 1936-1947 

  70. Mishra P.J., Merlino G.: MicroRNA reexpression as differentiationtherapy in cancer. J. CIin. Invest., 2009; 119: 2119-2123 

  71. Morera Pons S., Castellote Bargallo A.I., López Sabater M.C.:Analysis of human milk triacylglycerols by high-performance liquidchromatography with light-scattering detection. J. Chromatogr.A, 1998; 823: 475-482 

  72. 10.1371/journal.pone.0050564 Munch E.M., Harris R.A., Mohammad M., Benham A.L., PejerreyS.M., Showalter L., Hu M., Shope C.D., Maningat P.D., Gunaratne P.H.,Haymond M., Aagaard K.: Transcriptome profiling of microRNA bynext-gen deep sequencing reveals known and novel miRNA speciesin the lipid fraction of human breast milk. PLoS One, 2013; 8: e50564 

  73. Na R.S., E G.X., Sun W., Sun X.W., Qiu X.Y., Chen L.P., Huang Y.F.:Expressional analysis of immune-related miRNAs in breast milk.Genet. Mol. Res., 2015; 14: 11371-11376 

  74. Neville M.C., McFadden T.B., Forsyth I.: Hormonal regulationof mammary differentiation and milk secretion. J. Mammary GlandBiol. Neoplasia, 2002; 7: 49-66 

  75. O’Day E., Lal A.: MicroRNAs and their target gene networks inbreast cancer. Breast Cancer Res., 2010; 12: 201 

  76. Pauley K.M., Cha S., Chan E.K.: MicroRNA in autoimmunity andautoimmune diseases. J. Autoimmun., 2009; 32: 189-194 

  77. 10.2174/2211536607666180206150503 Perri M., Lucente M., Cannataro R., De Luca I.F., Gallelli L., MoroG., De Sarro G., Caroleo M.C., Cione E.: Variation in immune-relatedmicroRNAs profile in human milk amongst lactating women. MicroRNA,2018; 7: 107-114 

  78. 10.1038/nutd.2011.21 Perry B., Wang Y.: Appetite regulation and weight control: therole of gut hormones. Nutr. Diabetes, 2012; 2: e26 

  79. 10.1016/j.jff.2017.05.009 Rani P., Vashisht M., Golla N., Shandilya S., Onteru S.K., SinghD.: Milk miRNAs encapsulated in exosomes are stable to human digestionand permeable to intestinal barrier in vitro. J. Funct. Foods,2017; 34: 431-439 

  80. 10.1038/35002607 Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., BettingerJ.C., Rougvie A.E., Horvitz H.R., Ruvkun G.: The 21-nucleotide let-7RNA regulates developmental timing in Ceanorhabditis elegans. Nature,2000; 403: 901-906 

  81. Roush S., Slack F.J.: The let-7 family of microRNAs. Trends CellBiol., 2008; 18: 505-516 

  82. Satoh J.I., Tabunoki H.: Comprehensive analysis of human microRNAtarget networks. BioData Min., 2011; 4: 17 

  83. Schulte C., Zeller T.: MicroRNA-based diagnostics and therapyin cardiovascular disease - summing up the facts. Cardiovasc. Diagn.Ther., 2015; 5: 17-36 

  84. Shandilya S., Rani P., Onteru S.K., Singh D.: Small interferingRNA in milk exosomes is resistant to digestion and cross intestinalbarrier in vitro. J. Agric. Food Chem., 2017; 65: 9506-9513 

  85. Sikora E., Ptak W., Bryniarski K.: Immunoregulacja poprzez interferencyjnyRNA - mechanizmy, rola, perspektywy. Postępy Hig.Med. Dośw., 2011; 65: 482-495 

  86. Takagi S., Nakajima M., Mohri T., Yokoi T.: Post-transcriptionalregulation of human pregnane X receptor by microRNA affectsthe expression of cytochrome P450 3A4. J. Biol. Chem., 2008; 283:9674-9680 

  87. 10.1152/ajpendo.90958.2008 Takeuchi K., Reue K.: Biochemistry, physiology, and geneticsof GPAT, AGPAT, and lipid enzymes in triglyceride synthesis. Am. J.Physiol. Endocrinol. Metab., 2009; 296: E1195-E1209 

  88. Title A.C., Denzler R., Stoffel M.: Uptake and function studiesof maternal milk-derived microRNAs. J. Biol. Chem., 2015; 290:23680-23691 

  89. Vaishya S., Sarwade R.D., Seshadri V.: MicroRNA, proteins, andmetabolites as novel biomarkers for prediabetes, diabetes, and relatedcomplications. Front. Endocrinol., 2018; 9: 180 

  90. Wagschal A., Najafi-Shoushtari S.H., Wang L., Geodeke L., SinhaS., deLemos A.S., Black J.C., Ramírez C.M., Li Y., Tewhey R., HatoumI., Shah N., Lu Y., Kristo F., Psychogios N. i wsp.: Genome-wide identificationof microRNAs regulating cholesterol and triglyceride homeostasis.Nat. Med., 2015; 21: 1290-1297 

  91. Wang X.X., Zhang R., Li Y.: Expression of the miR-148/152 familyin acute myeloid leukemia and its clinical significance. Med. Sci.Monit., 2017; 23: 4768-4778 

  92. Wang X.Y., Chen X.Y., Li J., Zhang H.Y., Liu J., Sun L.D.: miR-200aexpression in CD4+ T cells correlates with the expression of Th17/Treg cells and relevant cytokines in psoriasis vulgaris: A case controlstudy. Biomed. Pharmacother., 2017; 93: 1158-1164 

  93. Wang Y.D., Wood W.I.: Amino acids of the human growth hormonereceptor that are required for proliferation and Jak-STATsignalling. Mol. Endocrinol., 1995; 9: 303-311 

  94. Weber J.A., Baxter D.H., Zhang S., Huang D.Y., Huang K.H., LeeM.J., Galas D.J., Wang K.: The microRNA spectrum in 12 body fluids.Clin. Chem., 2010; 56: 1733-1741 

  95. Wolf T., Baier S.R., Zempleni J.: The intestinal transport of bovine milkexosomes is mediated by endocytosis in human colon carcinoma Caco- 

  96. Xiao C., Srinivasan L., Calado D.P., Patterson H.C., Zhang B., WangJ., Henderson J.M., Kutok J.L., Rajewsky K.: Lymphoproliferative diseaseand autoimmunity in mice with increased miR-17-92 expressionin lymphocytes. Nat. Immunol., 2008; 9: 405-414 

  97. Yu J., Li Q., Xu Q., Liu L., Jiang B.: miR-148a inhibits angiogenesisby targeting ERBB3. J. Biomed. Res., 2011; 25: 170-177 

  98. Zhang G., Estève P.O., Chin H.G., Terragni J., Dai N., Corrêa I.R.Jr., Pradhan S.: Small RNA-mediated DNA (cytosine-5) methyltransferase 1 inhibition leads to aberrant DNA methylation. Nucleic AcidsRes., 2015; 43: 6112-6124 

  99. Zhou B.P., Liao Y., Xia W., Zou Y., Spohn B., Hung M.C.: HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation.Nat. Cell. Biol., 2001; 3: 973-982 

  100. Zhou Q., Li M., Wang X., Li Q., Wang T., Zhu Q., Zhou X., WangX., Gao X., Li X.: Immune-related microRNAs are abundant in breastmilk exosomes. Int. J. Biol. Sci., 2012; 8: 118-123 

  101. Zwart W., Theodorou V., Carroll J.S.: Estrogen receptor-positivebreast cancer: A multidisciplinary challenge. Wiley Interdiscip. Rev.Syst. Biol. Med., 2011; 3: 216-230 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로