$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Rationalizing the therapeutic potential of apigenin against cancer

Life sciences, v.267, 2021년, pp.118814 -   

Ahmed, Semim Akhtar (Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University) ,  Parama, Dey (Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati) ,  Daimari, Enush (Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University) ,  Girisa, Sosmitha (Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati) ,  Banik, Kishore (Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati) ,  Harsha, Choudhary (Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environment) ,  Dutta, Uma ,  Kunnumakkara, Ajaikumar B.

Abstract AI-Helper 아이콘AI-Helper

Abstract Background Despite the remarkable advances made in the diagnosis and treatment of cancer during the past couple of decades, it remains the second largest cause of mortality in the world, killing approximately 9.6 million people annually. The major challenges in the treatment of the advance...

주제어

참고문헌 (655)

  1. CA Cancer J. Clin. Bray 68 6 394 2018 10.3322/caac.21492 Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries 

  2. Cancer Lett. Banik 416 75 2018 10.1016/j.canlet.2017.12.014 Therapeutic potential of gambogic acid, a caged xanthone, to target cancer 

  3. Semin. Cancer Biol. Khatoon 2020 Phytochemicals in cancer cell chemosensitization: current knowledge and future perspectives 

  4. Recent Patents Anti-Cancer Drug Discov. Bordoloi 11 1 67 2016 10.2174/1574892810666151020101706 Multi-targeted agents in cancer cell chemosensitization: what we learnt from curcumin thus far 

  5. Pharmacol. Res. Sailo 130 259 2018 10.1016/j.phrs.2018.02.017 Tocotrienols: the promising analogues of vitamin E for cancer therapeutics 

  6. Int. J. Mol. Sci. Ranaware 19 8 2362 2018 10.3390/ijms19082362 Magnolol: a neolignan from the magnolia family for the prevention and treatment of cancer 

  7. Bordoloi 1 2018 Cancer Cell Chemoresistance and Chemosensitization Introduction and basic concepts of cancer 

  8. Pharm. Res. Anand 25 9 2097 2008 10.1007/s11095-008-9661-9 Cancer is a preventable disease that requires major lifestyle changes. Erratum in: Pharm Res. 2008 Sep;25(9):2200. Kunnumakara, Ajaikumar B [corrected to Kunnumakkara, Ajaikumar B] 

  9. Transl. Oncol. Shabnam 11 6 1379 2018 10.1016/j.tranon.2018.08.015 Sorcin a potential molecular target for cancer therapy 

  10. Eur. J. Med. Chem. Sharma 188 2020 10.1016/j.ejmech.2019.112016 Thiazole-containing compounds as therapeutic targets for cancer therapy 

  11. Lancet Glob. Health Plummer 4 9 e609 2016 10.1016/S2214-109X(16)30143-7 Global burden of cancers attributable to infections in 2012: a synthetic analysis 

  12. Br. J. Cancer Parkin 105 Suppl 2(Suppl 2) S77 2011 10.1038/bjc.2011.489 16. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010 

  13. CA Cancer J. Clin. Jemal 61 2 69 2011 10.3322/caac.20107 Global cancer statistics. Erratum in CA Cancer J Clin. 2011 Mar-Apr;61(2):134 

  14. CA Cancer J. Clin. Torre 65 2 87 2015 10.3322/caac.21262 Global cancer statistics, 2012 

  15. J. Cell. Biochem. Aggarwal 102 3 580 2007 10.1002/jcb.21500 Targeting cell signaling pathways for drug discovery: an old lock needs a new key 

  16. Nutr. Cancer Shanmugam 63 2 161 2011 10.1080/01635581.2011.523502 Targeting cell signaling and apoptotic pathways by dietary agents: role in the prevention and treatment of cancer 

  17. Semin. Cancer Biol. Kirtonia 2020 Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics 

  18. Curr. Opin. Pharmacol. Khanna 7 3 344 2007 10.1016/j.coph.2007.03.002 Natural products as a gold mine for arthritis treatment 

  19. Cancer Lett. Liu 362 1 8 2015 10.1016/j.canlet.2015.03.019 Garcinol: current status of its anti-oxidative, anti-inflammatory and anti-cancer effects 

  20. J. Ethnopharmacol. Ajaikumar 96 1-2 171 2005 10.1016/j.jep.2004.09.007 The inhibition of gastric mucosal injury by Punicagranatum L. (pomegranate) methanolic extract 

  21. J. Immunol. (Baltimore, Md.: 1950) Nair 177 8 5612 2006 10.4049/jimmunol.177.8.5612 Deguelin, an Akt inhibitor, suppresses IkappaBalpha kinase activation leading to suppression of NF-kappaB-regulated gene expression, potentiation of apoptosis, and inhibition of cellular invasion 

  22. Phytomed. Int. J. Phytother. Phytopharmacol. Gupta 34 14 2017 Neem (Azadirachta indica): an indian traditional panacea with modern molecular basis 

  23. J. Med. Food Amalraj 20 10 1022 2017 10.1089/jmf.2017.3930 A novel highly bioavailable curcumin formulation improves symptoms and diagnostic indicators in rheumatoid arthritis patients: a randomized, double-blind, placebo-controlled, two-dose, three-arm, and parallel-group study 

  24. Phytother. Res. PTR Gopi 31 12 1883 2017 10.1002/ptr.5931 Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: an open-label parallel-arm study 

  25. Experim. Biol. Med. (Maywood, N.J.) Dai 240 6 760 2015 10.1177/1535370215579167 Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy 

  26. Cancer Lett. Shanmugam 320 2 158 2012 10.1016/j.canlet.2012.02.037 Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: potential role in prevention and therapy of cancer 

  27. Cancer Lett. Roy 377 1 74 2016 10.1016/j.canlet.2016.04.017 The potential role of boswellic acids in cancer prevention and treatment 

  28. Curr. Pharm. Des. Monisha 22 27 4173 2016 10.2174/1381612822666160609110231 NF-κB blockers gifted by mother nature: prospectives in cancer cell chemosensitization 

  29. Cancers Sailo 11 2 246 2019 10.3390/cancers11020246 FBXW7 in cancer: what has been unraveled thus far? 

  30. Int. J. Mol. Sci. Bordoloi 19 10 2974 2018 10.3390/ijms19102974 TIPE family of proteins and its implications in different chronic diseases 

  31. Br. J. Pharmacol. Kunnumakkara 174 11 1325 2017 10.1111/bph.13621 Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases 

  32. Clin. Sci. (Lond. Engl. 1979) Kunnumakkara 131 15 1781 2017 10.1042/CS20160935 Curcumin mediates anticancer effects by modulating multiple cell signaling pathways 

  33. Monisha 15 2017 Cancer Cell Chemoresistance and Chemosensitization Cancer cell chemoresistance: a prime obstacle in cancer therapy 

  34. J. Mol. Med. (Berlin, Germany) Khwairakpam 98 1 71 2020 10.1007/s00109-019-01863-0 The vital role of ATP citrate lyase in chronic diseases 

  35. Semin. Cancer Biol. Kashyap 2019 Natural product-based nanoformulations for cancer therapy: opportunities and challenges 

  36. Molecules (Basel, Switzerland) Merarchi 24 6 1047 2019 10.3390/molecules24061047 Role of natural products in modulating histone deacetylases in cancer 

  37. Curr. Vasc. Pharmacol. Shanmugam 15 6 503 2017 10.2174/1570161115666170713094319 Potential role of natural compounds as anti-angiogenic agents in cancer 

  38. Cancer Lett. Kunnumakkara 269 2 199 2008 10.1016/j.canlet.2008.03.009 Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins 

  39. Semin. Cancer Biol. Patel 40-41 100 2016 10.1016/j.semcancer.2016.03.002 Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases 

  40. Biomed. Res. Int. Rahmani 2014 761608 2014 10.1155/2014/761608 Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways 

  41. J. Colloid Interface Sci. Banerjee 491 98 2017 10.1016/j.jcis.2016.12.025 Enhanced chemotherapeutic efficacy of apigenin liposomes in colorectal cancer based on flavone-membrane interactions 

  42. Metabolites Dias 2 2 303 2012 10.3390/metabo2020303 A historical overview of natural products in drug discovery 

  43. Semin. Cancer Biol. Shanmugam 40-41 35 2016 10.1016/j.semcancer.2016.03.005 Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds 

  44. Phytomed. Int. J. Phytother. Phytopharmacol. Padmavathi 25 118 2017 Butein in health and disease: a comprehensive review 

  45. Life Sci. Parama 118182 2020 Diosgenin, a steroidal saponin, and its analogues: effective therapies against different chronic diseases 

  46. Biomed. Res. Int. Hsieh 2015 182835 2015 10.1155/2015/182835 Natural bioactives in cancer treatment and prevention 

  47. Evidence-based Complement. Altern. Med. eCAM. Yang 2013 698190 2013 10.1155/2013/698190 Natural bioactives and phytochemicals serve in cancer treatment and prevention 

  48. J. Nat. Prod. Newman 79 3 629 2016 10.1021/acs.jnatprod.5b01055 Natural products as sources of new drugs from 1981 to 2014 

  49. Heneman 1 2008 Nutrition and Health Info Sheet: Phytochemicals, ANR Publication 8313 

  50. Cancer Res. Kunnumakkara 70 21 8695 2010 10.1158/0008-5472.CAN-10-2318 {Gamma}-tocotrienol inhibits pancreatic tumors and sensitizes them to gemcitabine treatment by modulating the inflammatory microenvironment 

  51. Cancer Prev. Res. (Phila.) Millimouno 7 11 1081 2014 10.1158/1940-6207.CAPR-14-0136 Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature 

  52. Biochem. Pharmacol. Prasannan 84 10 1268 2012 10.1016/j.bcp.2012.07.015 Key cell signaling pathways modulated by zerumbone: role in the prevention and treatment of cancer 

  53. Aggarwal 2009 Molecular Targets and Therapeutic Uses of Spices: Modern Uses for Ancient Medicine 

  54. Pharmacol. Res. Khwairakpam 133 53 2018 10.1016/j.phrs.2018.04.021 Possible use of Punica granatum (pomegranate) in cancer therapy 

  55. Kunnumakkara 1 2009 Molecular Targets and Therapeutic Uses of Spices Traditional uses of spices: an overview 

  56. Expert Opin. Drug Metab. Toxicol. Kunnumakkara 15 9 705 2019 10.1080/17425255.2019.1650914 Is curcumin bioavailability a problem in humans: lessons from clinical trials 

  57. Food Chem. Toxicol. Int. J. Brit. Ind. Biol. Res. Assoc. Harsha 108 Pt A 104 2017 10.1016/j.fct.2017.07.023 Antiulcer properties of fruits and vegetables: a mechanism based perspective 

  58. Biomedicines Merarchi 7 3 53 2019 10.3390/biomedicines7030053 A brief overview of the antitumoral actions of leelamine 

  59. Int. J. Mol. Sci. Roy 20 17 4101 2019 10.3390/ijms20174101 An update on pharmacological potential of Boswellic acids against chronic diseases 

  60. Kunnumakkara 2013 Anticancer Properties of Fruits and Vegetables 

  61. J. Basic Clin. Physiol. Pharmacol. Khwairakpam 29 2 107 2018 10.1515/jbcpp-2016-0132 Acorus calamus: a bio-reserve of medicinal values 

  62. J. Basic Clin. Physiol. Pharmacol. Khwairakpam 31 3 2019 Vietnamese coriander inhibits cell proliferation, survival and migration via suppression of Akt/mTOR pathway in oral squamous cell carcinoma 

  63. Mol. Carcinog. Shanmugam 54 10 971 2015 10.1002/mc.22166 Abrogation of STAT3 signaling cascade by zerumbone inhibits proliferation and induces apoptosis in renal cell carcinoma xenograft mouse model 

  64. Molecules (Basel, Switzerland) Henamayee 25 10 2278 2020 10.3390/molecules25102278 Therapeutic emergence of rhein as a potential anticancer drug: a review of its molecular targets and anticancer properties 

  65. Planta Med. Aggarwal 74 13 1560 2008 10.1055/s-2008-1074578 Potential of spice-derived phytochemicals for cancer prevention 

  66. Biochem. Pharmacol. Goel 75 4 787 2008 10.1016/j.bcp.2007.08.016 Curcumin as “curecumin”: from kitchen to clinic 

  67. Kunnumakkara 373 2009 Molecular Targets and Therapeutic Uses of Spices Mint and its constituents 

  68. Kunnumakkara 455 2009 DNA Damage and Cancer Chemoprevention by Polyphenols, Chemoprevention of Cancer and DNA Damage by Dietary Factors 

  69. Pharmacol. Res. Shanmugam 129 357 2018 10.1016/j.phrs.2017.11.023 Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn 

  70. Cancers Ong 11 5 611 2019 10.3390/cancers11050611 Focus on Formononetin: anticancer potential and molecular targets 

  71. Phytomed. Int. J. Phytother. Phytopharmacol. Padmavathi 22 13 1163 2015 Potential of butein, a tetrahydroxychalcone to obliterate cancer 

  72. J. Experim. Clin. Cancer Res. CR Babu 22 4 581 2003 Free radical scavenging, antitumor and anticarcinogenic activity of gossypin 

  73. Front. Pharmacol. Nurgali 9 245 2018 10.3389/fphar.2018.00245 Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? 

  74. Int. J. Mol. Sci. Salehi 20 6 1305 2019 10.3390/ijms20061305 The therapeutic potential of apigenin 

  75. Blood Kunnumakkara 109 12 5112 2007 10.1182/blood-2007-01-067256 Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-kappaB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis 

  76. Pharmacol. Res. Banik 144 192 2019 10.1016/j.phrs.2019.04.004 Honokiol for cancer therapeutics: a traditional medicine that can modulate multiple oncogenic targets 

  77. Experim. Biol. Med. (Maywood, N.J.) Kunnumakkara 244 8 663 2019 10.1177/1535370219839163 Cancer drug development: the missing links 

  78. Molecules (Basel, Switzerland) Girisa 24 4 734 2019 10.3390/molecules24040734 Potential of zerumbone as an anti-cancer agent 

  79. Crit. Rev. Food Sci. Nutr. Bishayee 56 10 1753 2016 10.1080/10408398.2014.982243 Potential benefits of edible berries in the management of aerodigestive and gastrointestinal tract cancers: preclinical and clinical evidence 

  80. Oncotarget Siveen 5 3 634 2014 10.18632/oncotarget.1596 Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB regulated gene products in multiple myeloma xenograft mouse model 

  81. Semin. Cancer Biol. Mohan 2020 Targeting STAT3 signaling pathway in cancer by agents derived from mother nature 

  82. Cell Biosci. Yan 7 50 2017 10.1186/s13578-017-0179-x Apigenin in cancer therapy: anti-cancer effects and mechanisms of action 

  83. J. Aerosol Med. Pulmon. Drug Deliv. Pápay 30 4 274 2017 10.1089/jamp.2016.1316 Study on the pulmonary delivery system of apigenin-loaded albumin nanocarriers with antioxidant activity 

  84. Food Chem. Toxicol. Int. J. Brit. Ind. Biol. Res. Assoc. Wang 53 376 2013 10.1016/j.fct.2012.12.018 In vitro anti-inflammatory effect of apigenin in the Helicobacter pylori-infected gastric adenocarcinoma cells 

  85. Int. J. Pharm. Sci. Rev. Res. Lakshmi 9 136 2011 Yarrow (Achillea millefolium Linn.) a herbal medicinal plant with broad therapeutic use - a review 

  86. Evidence-based Complem. Altern. Med. eCAM Street 2013 579319 2013 Cichorium intybus: traditional uses, phytochemistry, pharmacology, and toxicology 

  87. J. Ethnopharmacol. Csupor 127 1 193 2010 10.1016/j.jep.2009.09.049 The traditional Hungarian medicinal plant Centaurea sadleriana Janka accelerates wound healing in rats 

  88. Franke 2005 Chamomile: Industrial Profiles 

  89. Gardner 2013 American Herbal Products Association's Botanical Safety Handbook 

  90. Am. J. Chin. Med. Lin 22 2 155 1994 10.1142/S0192415X9400019X Hepatoprotective effects of Taiwan folk medicine: wedelia chinensis on three hepatotoxin-induced hepatotoxicity 

  91. Adv. Nutr. (Bethesda, Md.) Hostetler 8 3 423 2017 10.3945/an.116.012948 Flavones: food sources, bioavailability, metabolism, and bioactivity 

  92. J. Anal. Methods Chem. Głowacki 2016 2016 10.1155/2016/3827832 Determination of total apigenin in herbs by micellar electrokinetic chromatography with UV detection 

  93. J. Agric. Food Chem. Chun 51 25 7240 2003 10.1021/jf0343579 Contribution of individual polyphenolics to total antioxidant capacity of plums 

  94. J. Agric. Food Chem. Innocenti 55 16 6596 2007 10.1021/jf070257h Flavonoids and biflavonoids in Tuscan berries of Juniperus communis L.: detection and quantitation by HPLC/DAD/ESI/MS 

  95. Acta Alimentaria ACTA ALIMENT Lugast 29 345 2000 10.1556/AAlim.29.2000.4.4 Flavonoid aglycons in foods of plant origin I. Vegetables 

  96. Food Chem. Trichopoulou 70 3 319 2000 10.1016/S0308-8146(00)00091-1 Nutritional composition and flavonoid content of edible wild greens and green pies: a potential rich source of antioxidant nutrients in the Mediterranean diet 

  97. Int. J. Food Sci. Nutr. Chun 55 3 191 2004 10.1080/09637480410001725148 Antioxidant properties of raw and processed cabbages 

  98. Food Chem. Škerget 89 2 191 2005 10.1016/j.foodchem.2004.02.025 Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities 

  99. J. Sci. Food Agric. Bahorun 84 12 1553 2004 10.1002/jsfa.1820 Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables 

  100. Food Chem. Dykes 116 1 313 2009 10.1016/j.foodchem.2009.02.052 Flavonoid composition of red sorghum genotypes 

  101. J. Agric. Food Chem. Dietrych-Szostak 47 10 4384 1999 10.1021/jf990121m Effect of processing on the flavonoid content in buckwheat (Fagopyrum esculentum Möench) grain 

  102. Fitoterapia Carnat 75 1 32 2004 10.1016/j.fitote.2003.07.007 The aromatic and polyphenolic composition of Roman camomile tea 

  103. Bhagwat 1 2011 USDA Database for the Flavonoid Content of Selected Foods 

  104. Food Chem. Wojdyło 105 3 940 2007 10.1016/j.foodchem.2007.04.038 Antioxidant activity and phenolic compounds in 32 selected herbs 

  105. J. Sci. Food Agric. Chu 80 561 2000 10.1002/(SICI)1097-0010(200004)80:5<561::AID-JSFA574>3.0.CO;2-# Flavonoid content of several vegetables and their antioxidant activity 

  106. J. Food Compos. Anal. Franke 17 1 1 2004 10.1016/S0889-1575(03)00066-8 Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii 

  107. J. Agric. Food Chem. Sakakibara 51 3 571 2003 10.1021/jf020926l Simultaneous determination of all polyphenols in vegetables, fruits, and teas 

  108. Nutrition (Burbank, Los Angeles County, Calif.) Sartelet 12 2 100 1996 10.1016/0899-9007(96)90707-8 Flavonoids extracted from fonio millet (Digitaria exilis) reveal potent antithyroid properties 

  109. Pharmacogn. Rev. Al-Asmari 11 21 13 2017 10.4103/phrev.phrev_35_16 An updated phytopharmacological review on medicinal plant of Arab region: Apium graveolens Linn 

  110. J. Tradit. Chin. Med. Chung i Tsa Chih Ying Wen Pan Farzaei 33 6 815 2013 Parsley: a review of ethnopharmacology, phytochemistry and biological activities 

  111. J. Med. Food Shebaby 18 7 745 2015 10.1089/jmf.2014.3225 Daucus carota pentane-based fractions suppress proliferation and induce apoptosis in human colon adenocarcinoma HT-29 cells by inhibiting the MAPK and PI3K pathways 

  112. IOSR J. Pharm. Al-Snafi 6 3 41 2016 Medical importance of Cichorium intybus-a review 

  113. Molecules (Basel, Switzerland) Cruz 17 2 1535 2012 10.3390/molecules17021535 Carotenoids of lettuce (Lactuca sativa L.) grown on soil enriched with spent coffee grounds 

  114. Int. J. Adv. Biol. Biomed. Res. Zadeh 2 3 823 2014 Chamomile (Matricaria recutita) as a valuable medicinal plant 

  115. S. Afr. J. Bot. Devrnja 111 212 2017 10.1016/j.sajb.2017.03.028 Comparative studies on the antimicrobial and cytotoxic activities of Tanacetum vulgare L. essential oil and methanol extracts 

  116. Int. J. Pharm. Sci. Drug Res. Adhikari 4 110 2012 A review on medicinal importance of Basella alba L 

  117. Molecules (Basel, Switzerland) Bhandari 20 1 1228 2015 10.3390/molecules20011228 Chemical composition and antioxidant activity in different tissues of brassica vegetables 

  118. J. Food Eng. Gonçalves 93 32 2009 10.1016/j.jfoodeng.2008.12.027 Biochemical and colour changes of watercress (Nasturtium officinale R. Br.) during freezing and frozen storage 

  119. Indian J. Med. Sci. Manvar 67 3-4 49 2013 10.4103/0019-5359.121115 Phytochemical and pharmacological profile of Ipomoea aquatica 

  120. Rev. Bras Meira 22 682 2012 Review of the genus Ipomoea: traditional uses, chemistry and biological activities 

  121. Am. J. Phytomed. Clin. Ther. Shaheen 4 127 2016 Health promoting potential benefits of Vaccinium macrocarpon 

  122. Mol. Nutr. Food Res. Nagulapalli Venkata 61 6 2017 10.1002/mnfr.201600950 A small plant with big benefits: fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion 

  123. Pharm. Res. Rao 3 2 143 2011 Chemical constituents and biological studies of Origanum vulgare Linn 

  124. Songklanakarin J. Sci. Technol. Mahboubi 36 83 2014 Chemical composition and antimicrobial activity of peppermint (Mentha piperita L.) essential oil 

  125. J. Food Drug Anal. Lou 25 1 162 2017 10.1016/j.jfda.2016.10.024 Phenolic compounds and biological activities of small-size citrus: kumquat and calamondin 

  126. J. Pharm. Biol. Al-Snafi 5 3 124 2015 The pharmacological importance of capsicum species (Capsicum annuum and Capsicum frutescens) grown in Iraq 

  127. Mol. Med. Rep. Srivastava 3 6 895 2010 Chamomile: a herbal medicine of the past with bright future 

  128. Evidence-based Complement. Altern. Med. eCAM Salem 2017 4951937 2017 Chemicals compositions, antioxidant and anti-inflammatory activity of Cynara scolymus leaves extracts, and analysis of major bioactive polyphenols by HPLC 

  129. Nutr. Cancer Jain 34 2 173 1999 10.1207/S15327914NC3402_8 Plant foods, antioxidants, and prostate cancer risk: findings from case-control studies in Canada 

  130. Appl. Environ. Microbiol. Leonard 71 12 8241 2005 10.1128/AEM.71.12.8241-8248.2005 Investigation of two distinct flavone synthases for plant-specific flavone biosynthesis in Saccharomyces cerevisiae 

  131. Pharm. Res. Shukla 27 6 962 2010 10.1007/s11095-010-0089-7 Apigenin: a promising molecule for cancer prevention 

  132. Int. J. Pharm. Zhang 436 1-2 311 2012 10.1016/j.ijpharm.2012.07.002 Biopharmaceutics classification and intestinal absorption study of apigenin 

  133. Int. J. Oncol. Patel 30 1 233 2007 Apigenin and cancer chemoprevention: progress, potential and promise (review) 

  134. Int. J. Food Prop. Ali 20 6 1197 2017 10.1080/10942912.2016.1207188 Health functionality of apigenin: a review 

  135. Recent Patents Inflamm. Allergy Drug Discov. Sharma 13 2 124 2019 10.2174/1872213X13666190816160240 Probing into therapeutic anti-cancer potential of apigenin: recent trends and future directions 

  136. J. Microbiol. Biotechnol. Lee 25 9 1442 2015 10.4014/jmb.1503.03011 Biosynthesis of two flavones, apigenin and genkwanin, in Escherichia coli 

  137. Front. Microbiol. Marín 8 921 2017 10.3389/fmicb.2017.00921 De novo biosynthesis of Apigenin, Luteolin, and Eriodictyol in the Actinomycete Streptomyces albus and production improvement by feeding and spore conditioning 

  138. J. Chem. Soc. (Resumed) Hutchins 91 1939 10.1039/jr9390000091 17. Chalkones: a new synthesis of chrysin, apigenin, and luteolin 

  139. NCBI, National Center for Biotechnology Information 

  140. Phytochemistry Hooper 71 8-9 904 2010 10.1016/j.phytochem.2010.02.015 Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga 

  141. Phytochemistry Hamilton 84 169 2012 10.1016/j.phytochem.2012.08.005 Elucidation of the biosynthesis of the di-C-glycosylflavone isoschaftoside, an allelopathic component from Desmodium spp. that inhibits Striga spp. development 

  142. NCBI, National Center for Biotechnology Information 

  143. J. Chem. Ecol. Kim 11 4 441 1985 10.1007/BF00989555 Isolation ofC-glycosylflavones as probing stimulant of planthoppers in rice plant 

  144. NCBI, National Center for Biotechnology Information 

  145. J. Med. Food Lim 19 11 1032 2016 10.1089/jmf.2016.0074 Apigetrin from Scutellaria baicalensis Georgi inhibits neuroinflammation in BV-2 microglia and exerts neuroprotective effect in HT22 hippocampal cells 

  146. Biochem. Biophys. Res. Commun. Sun 498 1 164 2018 10.1016/j.bbrc.2018.02.009 Apigetrin inhibits gastric cancer progression through inducing apoptosis and regulating ROS-modulated STAT3/JAK2 pathway 

  147. NCBI, National Center for Biotechnology Information 

  148. Food Funct. Hu 7 2 1002 2016 10.1039/C5FO01212K Apigenin-7-O-β-D-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock 

  149. Drug Invent. Today Kamalakararao 10 3552 2018 Effect of isolated bioactive flavonoid apigenin-7-o-β-d-glucuronide methyl ester on cyclooxygenase-2 gene expression in the breast cancer MCF-7 cell lines 

  150. NCBI, National Center for Biotechnology Information 

  151. Molecules (Basel, Switzerland) Meng 14 1 133 2008 10.3390/molecules14010133 Antioxidant activities of polyphenols extracted from Perilla frutescens varieties 

  152. Molecules (Basel, Switzerland) Kim 23 7 1777 2018 10.3390/molecules23071777 Aqueous extract of Perilla frutescens var. acuta relaxes the ciliary smooth muscle by increasing NO/cGMP content in vitro and in vivo 

  153. Phytochemistry Gurni 21 9 2428 1982 10.1016/0031-9422(82)85229-1 Apigeninidin as a leucoderivative in Ephedra frustillata 

  154. J. Chem. Soc. Perkin Trans. Costantino 2 2 227 1995 10.1039/p29950000227 Quantitative measurement of proton dissociation and tautomeric constants of apigeninidin 

  155. J. Sci. Food Agric. Akogou 99 4 2014 2019 10.1002/jsfa.9427 Application of apigeninidin-rich red sorghum biocolorant in a fermented food improves product quality 

  156. J. Food Sci. Geera 77 5 C566 2012 10.1111/j.1750-3841.2012.02668.x New highly stable dimeric 3-deoxyanthocyanidin pigments from Sorghum bicolor leaf sheath 

  157. NCBI, National Center for Biotechnology Information 

  158. J. Agric. Food Chem. Ghanta 55 26 10962 2007 10.1021/jf071892q Oxidative DNA damage preventive activity and antioxidant potential of Stevia rebaudiana (Bertoni) Bertoni, a natural sweetener 

  159. NCBI, National Center for Biotechnology Information 

  160. Iranian journal of pharmaceutical research Gohari 10 2 247 2011 Flavones and flavone glycosides from Salvia macrosiphon Boiss 

  161. Phytochemistry Nordby 7 9 1653 1968 10.1016/S0031-9422(00)88619-7 Apigenin 7β-rutinoside, a new flavonoid from the leaves of Citrus paradisi 

  162. Molecules (Basel, Switzerland) Nagy 14 1 509 2009 10.3390/molecules14010509 Antimutagenic activity and radical scavenging activity of water infusions and phenolics from ligustrum plants leaves 

  163. Eur. J. Med. Chem. Pan 122 674 2016 10.1016/j.ejmech.2016.07.015 Total synthesis of 8-(6″-umbelliferyl)-apigenin and its analogs as anti-diabetic reagents 

  164. Trends Food Sci. Technol. Boskou 17 505 2006 10.1016/j.tifs.2006.04.004 Sources of natural phenolic antioxidants 

  165. Food Chem Toxicol Kowalska 136 111016 2020 10.1016/j.fct.2019.111016 A comparison of the effects of apigenin and seven of its derivatives on selected biomarkers of oxidative stress and coagulation in vitro 

  166. Nutr. Cancer Miccadei 60 2 276 2008 10.1080/01635580801891583 Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells 

  167. Biochem. Pharmacol. Comalada 72 8 1010 2006 10.1016/j.bcp.2006.07.016 Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure-activity relationship 

  168. Int. Immunopharmacol. Funakoshi-Tago 11 9 1150 2011 10.1016/j.intimp.2011.03.012 Anti-inflammatory activity of structurally related flavonoids, apigenin, luteolin and fisetin 

  169. Inflammation Wang 37 6 2085 2014 10.1007/s10753-014-9942-x Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway 

  170. Mutat. Res. Kuo 270 2 87 1992 10.1016/0027-5107(92)90119-M Genotoxicities of nitropyrenes and their modulation by apigenin, tannic acid, ellagic acid and indole-3-carbinol in the Salmonella and CHO systems 

  171. J. Nutr. Van Dross 133 11 Suppl 1 3800s 2003 10.1093/jn/133.11.3800S The chemopreventive bioflavonoid apigenin modulates signal transduction pathways in keratinocyte and colon carcinoma cell lines 

  172. Anticancer Res. Birt 17 1a 85 1997 Inhibition of ultraviolet light induced skin carcinogenesis in SKH-1 mice by apigenin, a plant flavonoid 

  173. Toxicol. Appl. Pharmacol. Lee 226 2 178 2008 10.1016/j.taap.2007.09.013 Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells 

  174. Cell Death Dis. Ruela-de-Sousa 1 1 e19 2010 10.1038/cddis.2009.18 Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapy 

  175. Free Radic. Biol. Med. Shukla 44 10 1833 2008 10.1016/j.freeradbiomed.2008.02.007 Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation 

  176. Evidence-based Complement. Altern. Med. eCAM Ju 2015 186436 2015 10.1155/2015/186436 The flavonoid apigenin ameliorates cisplatin-induced nephrotoxicity through reduction of p53 activation and promotion of PI3K/Akt pathway in human renal proximal tubular epithelial cells 

  177. J. Chem. Pharm. Res. Hussein 7 996 2015 New approach in treatment of brain injury: neurotrophic effects of apigenin 

  178. Bioorg. Med. Chem. Wang 22 5 1515 2014 10.1016/j.bmc.2014.01.038 Synthesis, nitric oxide release, and α-glucosidase inhibition of nitric oxide donating apigenin and chrysin derivatives 

  179. Evidence-based Complement. Altern. Med. eCAM Pamunuwa 2016 8243215 2016 10.1155/2016/8243215 Antidiabetic properties, bioactive constituents, and other therapeutic effects of Scoparia dulcis 

  180. Am. J. Clin. Nutr. Janssen 67 2 255 1998 10.1093/ajcn/67.2.255 Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study 

  181. J. Agric. Food Chem. Yano 54 14 5203 2006 10.1021/jf0607361 Dietary apigenin suppresses IgE and inflammatory cytokines production in C57BL/6N mice 

  182. Immunopharmacol. Immunotoxicol. Li 32 3 364 2010 10.3109/08923970903420566 Apigenin inhibits allergen-induced airway inflammation and switches immune response in a murine model of asthma 

  183. FEMS Microbiol. Lett. Dong 338 2 124 2013 10.1111/1574-6968.12040 Apigenin alleviates the symptoms of Staphylococcus aureus pneumonia by inhibiting the production of alpha-hemolysin 

  184. Appl. Environ. Microbiol. Xia 82 1 87 2016 10.1128/AEM.02581-15 Combination therapy of LysGH15 and apigenin as a new strategy for treating pneumonia caused by Staphylococcus aureus 

  185. Virology Shibata 462-463 42 2014 10.1016/j.virol.2014.05.024 The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels 

  186. J. Nat. Prod. Fonseca-Silva 78 4 880 2015 10.1021/acs.jnatprod.5b00011 Effect of apigenin on leishmania amazonensis is associated with reactive oxygen species production followed by mitochondrial dysfunction 

  187. Pharm. Biol. Ozçelik 49 4 396 2011 10.3109/13880209.2010.519390 Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids 

  188. Mycoses Singh 57 8 497 2014 10.1111/myc.12188 Treatment of dermatophytosis by a new antifungal agent ‘apigenin’ 

  189. J. Anal. Biosci. Chakravarthi 32 320 2009 Apoptosis and expression of bcl-2 in cyclosporin induced renal damage and its reversal by beneficial effects of 4,5,7 - trihydroxyflavone 

  190. Chem. Biol. Interact. Shin 182 1 29 2009 10.1016/j.cbi.2009.07.016 Apigenin-induced apoptosis is mediated by reactive oxygen species and activation of ERK1/2 in rheumatoid fibroblast-like synoviocytes 

  191. Arthritis Res. Ther. Kang 11 2 R59 2009 10.1186/ar2682 Apigenin, a non-mutagenic dietary flavonoid, suppresses lupus by inhibiting autoantigen presentation for expansion of autoreactive Th1 and Th17 cells 

  192. Biochem. Pharmacol. Verbeek 68 4 621 2004 10.1016/j.bcp.2004.05.012 The flavones luteolin and apigenin inhibit in vitro antigen-specific proliferation and interferon-gamma production by murine and human autoimmune T cells 

  193. Food Chem. Toxicol. Int. J. Brit. Ind. Biol. Res. Assoc. Choi 64 27 2014 10.1016/j.fct.2013.11.020 Effects of C-glycosylation on anti-diabetic, anti-Alzheimer's disease and anti-inflammatory potential of apigenin 

  194. Molecules (Basel, Switzerland) Zhao 18 8 9949 2013 10.3390/molecules18089949 Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer's disease mouse model 

  195. Neuropharmacology Patil 86 192 2014 10.1016/j.neuropharm.2014.07.012 Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice 

  196. Zhong Yao Cai Zhongyaocai J. Chin. Med. Mater. Liu 31 6 870 2008 Neuroprotective effects of apigenin on acute transient focal cerebral ischemia-reperfusion injury in rats 

  197. Biomed. Res. Int. Tsalkidou 2014 157216 2014 10.1155/2014/157216 The effects of apigenin on the expression of Fas/FasL apoptotic pathway in warm liver ischemia-reperfusion injury in rats 

  198. Experim. Ther. Med. Zhang 13 5 1719 2017 10.3892/etm.2017.4165 Apigenin in the regulation of cholesterol metabolism and protection of blood vessels 

  199. Biomed. Aging Pathol. Alibabaei 4 4 355 2014 10.1016/j.biomag.2014.07.003 Matricaria chamomilla extract demonstrates antioxidant properties against elevated rat brain oxidative status induced by amnestic dose of scopolamine 

  200. J. Alzheimer's Dis. JAD Liu 24 1 85 2011 10.3233/JAD-2010-101593 The flavonoid apigenin protects brain neurovascular coupling against amyloid-β₂₅₋₃₅-induced toxicity in mice 

  201. Phytomed. Int. J. Phytother. Phytopharmacol. Mao 23 14 1735 2016 Long-term chamomile (Matricaria chamomilla L.) treatment for generalized anxiety disorder: a randomized clinical trial 

  202. Sleep Med. Rev. Leach 24 1 2015 10.1016/j.smrv.2014.12.003 Herbal medicine for insomnia: a systematic review and meta-analysis 

  203. Cancer Cell Int. Shi 15 33 2015 10.1186/s12935-015-0186-0 Apigenin, a dietary flavonoid, inhibits proliferation of human bladder cancer T-24 cells via blocking cell cycle progression and inducing apoptosis 

  204. Chin. J. Cancer Res. Chung-kuo Yen Cheng Yen Chiu Cao 25 2 212 2013 Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells 

  205. Oncol. Rep. Zhao 37 4 2277 2017 10.3892/or.2017.5450 Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells 

  206. Anti Cancer Agents Med. Chem. Tong 13 7 971 2013 10.2174/18715206113139990119 Targeting the PI3K/Akt/mTOR axis by apigenin for cancer prevention 

  207. Oncotarget Shukla 6 31 31216 2015 10.18632/oncotarget.5157 Apigenin blocks IKKα activation and suppresses prostate cancer progression 

  208. Sci. Rep. Cao 6 21731 2016 10.1038/srep21731 Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma 

  209. Oncol. Rep. Liu 34 2 1035 2015 10.3892/or.2015.4022 Apigenin inhibits the proliferation and invasion of osteosarcoma cells by suppressing the Wnt/β-catenin signaling pathway 

  210. Cell Johnstone 108 2 153 2002 10.1016/S0092-8674(02)00625-6 Apoptosis: a link between cancer genetics and chemotherapy 

  211. Toxicol. Pathol. Elmore 35 4 495 2007 10.1080/01926230701320337 Apoptosis: a review of programmed cell death 

  212. Biomolecules Aggarwal 9 11 735 2019 10.3390/biom9110735 Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements 

  213. Green 2011 Means to an End: Apoptosis and Other Cell Death Mechanisms 

  214. Cell Hanahan 100 1 57 2000 10.1016/S0092-8674(00)81683-9 The hallmarks of cancer 

  215. Nat. Rev. Mol. Cell Biol. Taylor 9 3 231 2008 10.1038/nrm2312 Apoptosis: controlled demolition at the cellular level 

  216. Cell. Mol. Life Sci. CMLS Kirtonia 2020 10.1007/s00018-020-03536-5 The multifaceted role of reactive oxygen species in tumorigenesis 

  217. Oncotarget Dai 8 8 12831 2017 10.18632/oncotarget.14606 A novel benzimidazole derivative, MBIC inhibits tumor growth and promotes apoptosis via activation of ROS-dependent JNK signaling pathway in hepatocellular carcinoma 

  218. Mol. Cancer Ther. Budhraja 11 1 132 2012 10.1158/1535-7163.MCT-11-0343 Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo 

  219. Mol. Cancer Zhao 10 104 2011 10.1186/1476-4598-10-104 Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90 

  220. J. Agric. Food Chem. Lin 60 45 11395 2012 10.1021/jf303446x Apigenin induces apoptosis through mitochondrial dysfunction in U-2 OS human osteosarcoma cells and inhibits osteosarcoma xenograft tumor growth in vivo 

  221. Chem. Biol. Interact. Wang 206 2 346 2013 10.1016/j.cbi.2013.10.009 Synergistic anti-glioma effect of Hydroxygenkwanin and Apigenin in vitro 

  222. Biosci. Rep. Seo 35 6 2015 10.1042/BSR20150165 Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells 

  223. Mol. Med. Rep. Seo 12 2 2977 2015 10.3892/mmr.2015.3698 Apigenin induces caspase-dependent apoptosis by inhibiting signal transducer and activator of transcription 3 signaling in HER2-overexpressing SKBR3 breast cancer cells 

  224. Oxidative Med. Cell. Longev. Souza 2017 1512745 2017 10.1155/2017/1512745 Oxidative stress triggered by apigenin induces apoptosis in a comprehensive panel of human cervical cancer-derived cell lines 

  225. Int. J. Oncol. Maeda 52 5 1661 2018 Apigenin induces apoptosis by suppressing Bcl-xl and Mcl-1 simultaneously via signal transducer and activator of transcription 3 signaling in colon cancer 

  226. Biomol. Ther. Kim 20 1 62 2012 10.4062/biomolther.2012.20.1.062 Apigenin sensitizes Huh-7 human hepatocellular carcinoma cells to TRAIL-induced apoptosis 

  227. J. Pathol. Glick 221 1 3 2010 10.1002/path.2697 Autophagy: cellular and molecular mechanisms 

  228. Cell Mizushima 147 4 728 2011 10.1016/j.cell.2011.10.026 Autophagy: renovation of cells and tissues 

  229. Oncogene Singh 37 9 1142 2018 10.1038/s41388-017-0046-6 Dual role of autophagy in hallmarks of cancer 

  230. Semin. Cancer Biol. Patra 2020 Autophagy-modulating phytochemicals in cancer therapeutics: current evidences and future perspectives 

  231. Cancer Deng 125 8 1228 2019 10.1002/cncr.31978 Targeting autophagy using natural compounds for cancer prevention and therapy 

  232. Int. J. Oncol. Lee 44 5 1599 2014 10.3892/ijo.2014.2339 Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells 

  233. Anti-Cancer Drugs Coelho 27 10 960 2016 10.1097/CAD.0000000000000413 The flavonoid apigenin from Croton betulaster Mull inhibits proliferation, induces differentiation and regulates the inflammatory profile of glioma cells 

  234. Mol. Carcinog. Tong 51 3 268 2012 10.1002/mc.20793 Apigenin, a chemopreventive bioflavonoid, induces AMP-activated protein kinase activation in human keratinocytes 

  235. Nature Kastan 432 7015 316 2004 10.1038/nature03097 Cell-cycle checkpoints and cancer 

  236. Mol. Med. Rep. Fang 12 5 6461 2015 10.3892/mmr.2015.4233 Apigenin inhibits the proliferation of adenoid cystic carcinoma via suppression of glucose transporter-1 

  237. Environ. Toxicol. Tseng 32 2 434 2017 10.1002/tox.22247 Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21(WAF1/CIP1) expression 

  238. Oncotarget Meng 8 12 19834 2017 10.18632/oncotarget.15771 Apigenin inhibits renal cell carcinoma cell proliferation 

  239. Food Funct. Zhang 6 11 3464 2015 10.1039/C5FO00671F Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells 

  240. Int. J. Oncol. Maggioni 43 5 1675 2013 10.3892/ijo.2013.2072 Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis 

  241. Nutr. Cancer Solmaz 66 4 599 2014 10.1080/01635581.2014.894099 Therapeutic potential of apigenin, a plant flavonoid, for imatinib-sensitive and resistant chronic myeloid leukemia cells 

  242. Oncogene Gupta 21 23 3727 2002 10.1038/sj.onc.1205474 Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells 

  243. Development (Cambridge, England) Yu 143 17 3050 2016 10.1242/dev.137075 Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination 

  244. Curr. Opin. Pharmacol. Yap 8 4 393 2008 10.1016/j.coph.2008.08.004 Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises 

  245. Cancer Cell Guertin 12 1 9 2007 10.1016/j.ccr.2007.05.008 Defining the role of mTOR in cancer 

  246. Molecules (Basel, Switzerland) Yang 24 8 1584 2019 10.3390/molecules24081584 Brassinin represses invasive potential of lung carcinoma cells through deactivation of PI3K/Akt/mTOR signaling cascade 

  247. Curr. Drug Targets Roy 18 4 421 2017 10.2174/1389450117666160307145236 Specific targeting of akt kinase isoforms: taking the precise path for prevention and treatment of cancer 

  248. Biomolecules Roy 9 7 253 2019 10.3390/biom9070253 Isoform-specific role of akt in oral squamous cell carcinoma 

  249. Cancers Lee 11 2 254 2019 10.3390/cancers11020254 Casticin-induced inhibition of cell growth and survival are mediated through the dual modulation of Akt/mTOR signaling cascade 

  250. Int. J. Mol. Sci. Harsha 21 9 3285 2020 10.3390/ijms21093285 Targeting AKT/mTOR in oral cancer: mechanisms and advances in clinical trials 

  251. Biochem. Pharmacol. Sethi 76 11 1404 2008 10.1016/j.bcp.2008.05.023 SH-5, an AKT inhibitor potentiates apoptosis and inhibits invasion through the suppression of anti-apoptotic, proliferative and metastatic gene products regulated by IkappaBalpha kinase activation 

  252. Nat. Prod. J. Roy 09 3 322 2019 Isoform-specific role of Akt kinase in cancer and its selective targeting by potential anticancer natural agents 

  253. PLoS One Mohan 11 4 2016 10.1371/journal.pone.0153155 Trisubstituted-imidazoles induce apoptosis in human breast cancer cells by targeting the oncogenic PI3K/Akt/mTOR signaling pathway 

  254. Cell. Signal. Bridgeman 28 5 460 2016 10.1016/j.cellsig.2016.02.008 Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: a new implication of skin cancer prevention 

  255. Carcinogenesis Shukla 35 2 452 2014 10.1093/carcin/bgt316 Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway 

  256. Evidence-based Complement. Altern. Med. eCAM Yu 2017 2590676 2017 10.1155/2017/2590676 Apigenin attenuates adriamycin-induced cardiomyocyte apoptosis via the PI3K/AKT/mTOR pathway 

  257. Oncol. Rep. Bao 34 4 1805 2015 10.3892/or.2015.4158 Inhibiting GLUT-1 expression and PI3K/Akt signaling using apigenin improves the radiosensitivity of laryngeal carcinoma in vivo 

  258. Molecules (Basel, Switzerland) Ko 22 7 1157 2017 10.3390/molecules22071157 2,5-Dihydroxyacetophenone induces apoptosis of multiple myeloma cells by regulating the MAPK activation pathway 

  259. Mol. Carcinog. Kim 54 10 1132 2015 10.1002/mc.22184 6-Shogaol exerts anti-proliferative and pro-apoptotic effects through the modulation of STAT3 and MAPKs signaling pathways 

  260. Onkologie Hilger 25 6 511 2002 The Ras-Raf-MEK-ERK pathway in the treatment of cancer 

  261. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. Sebolt-Leopold 14 12 3651 2008 10.1158/1078-0432.CCR-08-0333 Advances in the development of cancer therapeutics directed against the RAS-mitogen-activated protein kinase pathway 

  262. Biochim. Biophys. Acta McCubrey 1773 8 1263 2007 10.1016/j.bbamcr.2006.10.001 Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance 

  263. Molecules (Basel, Switzerland) Hasnat 20 12 21157 2015 10.3390/molecules201219752 Apigenin attenuates melanoma cell migration by inducing anoikis through integrin and focal adhesion kinase inhibition 

  264. Sci. Rep. Chen 6 2016 Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner 

  265. Mol. Cancer Ther. Shao 12 12 2640 2013 10.1158/1535-7163.MCT-13-0066 Apigenin sensitizes colon cancer cells to antitumor activity of ABT-263 

  266. Pharm. Res. Shukla 29 6 1506 2012 10.1007/s11095-011-0625-0 Apigenin attenuates insulin-like growth factor-I signaling in an autochthonous mouse prostate cancer model 

  267. Pancreas Pham 41 8 1306 2012 10.1097/MPA.0b013e31824d64d9 Apigenin inhibits NNK-induced focal adhesion kinase activation in pancreatic cancer cells 

  268. J. Cell. Physiol. Lim 231 12 2690 2016 10.1002/jcp.25372 Apigenin reduces survival of choriocarcinoma cells by inducing apoptosis via the PI3K/AKT and ERK1/2 MAPK pathways 

  269. Biomedicines Puar 6 3 82 2018 10.3390/biomedicines6030082 Evidence for the involvement of the master transcription factor NF-κB in cancer initiation and progression 

  270. Int. J. Mol. Sci. Ramadass 21 14 5164 2020 10.3390/ijms21145164 Small molecule NF-κB pathway inhibitors in clinic 

  271. Cancers. Wong 12 8 2020 10.3390/cancers12082203 Targeting NF-κB signaling for multiple myeloma 

  272. Cancer Prev. Res. (Phila.) Li 6 8 843 2013 10.1158/1940-6207.CAPR-13-0070 Garcinol, a polyisoprenylated benzophenone modulates multiple proinflammatory signaling cascades leading to the suppression of growth and survival of head and neck carcinoma 

  273. Immunol. Rev. Hoffmann 210 171 2006 10.1111/j.0105-2896.2006.00375.x Circuitry of nuclear factor kappaB signaling 

  274. Front. Pharmacol. Masuelli 8 373 2017 10.3389/fphar.2017.00373 In vitro and in vivo anti-tumoral effects of the flavonoid apigenin in malignant mesothelioma 

  275. FEBS Lett. Akıncılar 589 9 974 2015 10.1016/j.febslet.2015.02.035 Quantitative assessment of telomerase components in cancer cell lines 

  276. Trends Pharmacol. Sci. Sethi 30 6 313 2009 10.1016/j.tips.2009.03.004 Potential pharmacological control of the NF-κB pathway 

  277. Arch. Toxicol. Li 89 5 711 2015 10.1007/s00204-015-1470-4 NF-κB in cancer therapy 

  278. Experim. Biol. Med. (Maywood, N.J.) Sethi 233 1 21 2008 10.3181/0707-MR-196 Nuclear factor-kappaB activation: from bench to bedside 

  279. Proc. Natl. Acad. Sci. U. S. A. Li 113 50 14402 2016 10.1073/pnas.1611106113 Activation of mutant TERT promoter by RAS-ERK signaling is a key step in malignant progression of BRAF-mutant human melanomas 

  280. Crit. Rev. Immunol. Kunnumakkara 40 1 1 2020 10.1615/CritRevImmunol.2020033210 Inflammation, NF-κB, and chronic diseases: how are they linked? 

  281. Kunnumakkara 177 2009 Drug Resistance in Cancer Cells Nuclear factor-κB and chemoresistance: how intertwined are they? 

  282. J. Transl. Med. Kunnumakkara 16 1 14 2018 10.1186/s12967-018-1381-2 Chronic diseases, inflammation, and spices: how are they linked? 

  283. Cancer Res. Kunnumakkara 67 8 3853 2007 10.1158/0008-5472.CAN-06-4257 Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products 

  284. Nat. Commun. Khattar 10 1 5349 2019 10.1038/s41467-019-13082-9 Rap1 regulates hematopoietic stem cell survival and affects oncogenesis and response to chemotherapy 

  285. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. Lin 13 11 3423 2007 10.1158/1078-0432.CCR-06-3072 Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway 

  286. Cell. Microbiol. Iyer 10 7 1442 2008 10.1111/j.1462-5822.2008.01137.x Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-kappaB and MAPK signalling 

  287. Antioxidants (Basel, Switzerland) Ozturk 6 1 17 2017 Current insights to regulation and role of telomerase in human diseases 

  288. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. Kunnumakkara 14 7 2128 2008 10.1158/1078-0432.CCR-07-4722 Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products 

  289. J. Biol. Chem. Pandey 282 24 17340 2007 10.1074/jbc.M700890200 Butein, a tetrahydroxychalcone, inhibits nuclear factor (NF)-kappaB and NF-kappaB-regulated gene expression through direct inhibition of IkappaBalpha kinase beta on cysteine 179 residue 

  290. Cancer Res. Pandey 68 13 5370 2008 10.1158/0008-5472.CAN-08-0511 Berberine modifies cysteine 179 of IkappaBalpha kinase, suppresses nuclear factor-kappaB-regulated antiapoptotic gene products, and potentiates apoptosis 

  291. Curr. Drug Targets Monisha 18 2 232 2017 10.2174/1389450117666160201112330 Nuclear factor kappa B: a potential target to persecute head and neck cancer 

  292. PLoS One Shukla 10 9 2015 10.1371/journal.pone.0138710 Suppression of NF-κB and NF-κB-regulated gene expression by apigenin through IκBα and IKK pathway in TRAMP mice 

  293. Front. Oncol. Loh 9 48 2019 10.3389/fonc.2019.00048 Signal transducer and activator of transcription (STATs) proteins in cancer and inflammation: functions and therapeutic implication 

  294. Cancers Arora 10 9 327 2018 10.3390/cancers10090327 The role of signal transducer and activator of transcription 3 (STAT3) and its targeted inhibition in hematological malignancies 

  295. Br. J. Cancer Siveen 111 7 1327 2014 10.1038/bjc.2014.422 Negative regulation of signal transducer and activator of transcription-3 signalling cascade by lupeol inhibits growth and induces apoptosis in hepatocellular carcinoma cells 

  296. Mol. Carcinog. Kim 53 10 793 2014 10.1002/mc.22035 β-Caryophyllene oxide inhibits constitutive and inducible STAT3 signaling pathway through induction of the SHP-1 protein tyrosine phosphatase 

  297. J. Cell Sci. Rawlings 117 Pt 8 1281 2004 10.1242/jcs.00963 The JAK/STAT signaling pathway 

  298. Oncotarget Lee 8 11 17700 2017 10.18632/oncotarget.10775 Capsazepine inhibits JAK/STAT3 signaling, tumor growth, and cell survival in prostate cancer 

  299. Int. J. Oncol. Khanna 47 5 1617 2015 10.3892/ijo.2015.3160 The JAK/STAT signaling cascade in gastric carcinoma (review) 

  300. Mol. Oncol. Dai 9 4 818 2015 10.1016/j.molonc.2014.12.008 Ascochlorin, an isoprenoid antibiotic inhibits growth and invasion of hepatocellular carcinoma by targeting STAT3 signaling cascade through the induction of PIAS3 

  301. Vaccines Mullen 4 3 26 2016 10.3390/vaccines4030026 Leptin-induced JAK/STAT signaling and cancer growth 

  302. Ann. N. Y. Acad. Sci. Aggarwal 1171 59 2009 10.1111/j.1749-6632.2009.04911.x Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? 

  303. Cancer Lett. Lee 345 1 140 2014 10.1016/j.canlet.2013.12.008 Capillarisin inhibits constitutive and inducible STAT3 activation through induction of SHP-1 and SHP-2 tyrosine phosphatases 

  304. Ann. N. Y. Acad. Sci. Aggarwal 1091 151 2006 10.1196/annals.1378.063 Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution 

  305. Oncotarget Lee 6 8 6386 2015 10.18632/oncotarget.3443 Brassinin inhibits STAT3 signaling pathway through modulation of PIAS-3 and SOCS-3 expression and sensitizes human lung cancer xenograft in nude mice to paclitaxel 

  306. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. Bhutani 13 10 3024 2007 10.1158/1078-0432.CCR-06-2575 Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation 

  307. Int. J. Oncol. Suh 46 3 1405 2015 10.3892/ijo.2014.2808 Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells 

  308. Br. J. Pharmacol. Ong 174 24 4684 2017 10.1111/bph.13958 Lnc'-ing Wnt in female reproductive cancers: therapeutic potential of long non-coding RNAs in Wnt signalling 

  309. Cancers Bhuvanalakshmi 11 1 25 2018 10.3390/cancers11010025 Stemness, pluripotentiality, and Wnt antagonism: sFRP4, a Wnt antagonist mediates pluripotency and stemness in glioblastoma 

  310. Acta Physiol. (Oxford, England) Archbold 204 1 74 2012 10.1111/j.1748-1716.2011.02293.x How do they do Wnt they do?: regulation of transcription by the Wnt/β-catenin pathway 

  311. Cell. Signal. Krausova 26 3 570 2014 10.1016/j.cellsig.2013.11.032 Wnt signaling in adult intestinal stem cells and cancer 

  312. Biochim. Biophys. Acta Giles 1653 1 1 2003 Caught up in a Wnt storm: Wnt signaling in cancer 

  313. Cell Tissue Res. Ahmadzadeh 363 2 321 2016 10.1007/s00441-015-2300-y Wnt/β-catenin signaling in bone marrow niche 

  314. Oncogenesis Pohl 6 4 e310 2017 10.1038/oncsis.2017.14 Wnt signaling in triple-negative breast cancer 

  315. Front. Pharmacol. Bhuvanalakshmi 8 124 2017 10.3389/fphar.2017.00124 Breast cancer stem-like cells are inhibited by diosgenin, a steroidal saponin, by the attenuation of the Wnt β-catenin signaling via the Wnt antagonist secreted frizzled related protein-4 

  316. Oncol. Lett. Xu 11 5 3075 2016 10.3892/ol.2016.4331 Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway 

  317. Sci. Rep. Lin 7 1 372 2017 10.1038/s41598-017-00409-z Apigenin-induced lysosomal degradation of β-catenin in Wnt/β-catenin signaling 

  318. Biomolecules Chen 10 1 66 2019 10.3390/biom10010066 The emerging role of long non-coding RNAs in the metastasis of hepatocellular carcinoma 

  319. Trends Mol. Med. Chew 24 1 66 2018 10.1016/j.molmed.2017.11.003 Noncoding rnas: master regulators of inflammatory signaling 

  320. Cells Cheng 8 10 1178 2019 10.3390/cells8101178 Insights into biological role of LncRNAs in epithelial-mesenchymal transition 

  321. Carcinogenesis Romano 38 5 485 2017 10.1093/carcin/bgx026 Small non-coding RNA and cancer 

  322. Nat. Rev. Cancer Anastasiadou 18 1 5 2018 10.1038/nrc.2017.99 Non-coding RNA networks in cancer 

  323. Cell. Mol. Life Sci. CMLS Mishra 76 10 1947 2019 10.1007/s00018-019-03053-0 Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases 

  324. J. Hepatol. Klingenberg 67 3 603 2017 10.1016/j.jhep.2017.04.009 Non-coding RNA in hepatocellular carcinoma: mechanisms, biomarkers and therapeutic targets 

  325. Int. J. Biochem. Cell Biol. Ma 108 17 2019 10.1016/j.biocel.2019.01.003 The expanding roles of long non-coding RNAs in the regulation of cancer stem cells 

  326. Mol. Med. Rep. Chen 14 3 2352 2016 10.3892/mmr.2016.5460 Apigenin inhibits glioma cell growth through promoting microRNA-16 and suppression of BCL-2 and nuclear factor-κB/MMP-9 

  327. Chem. Biol. Interact. Gao 280 45 2018 10.1016/j.cbi.2017.11.020 Apigenin sensitizes hepatocellular carcinoma cells to doxorubic through regulating miR-520b/ATG7 axis 

  328. Oncotarget Gao 8 47 82085 2017 10.18632/oncotarget.18294 Apigenin sensitizes BEL-7402/ADM cells to doxorubicin through inhibiting miR-101/Nrf2 pathway 

  329. Cancer Genom. Proteom. Bauer 16 6 421 2019 10.21873/cgp.20146 Whole transcriptomic analysis of apigenin on TNFα immuno-activated MDA-MB-231 breast cancer cells 

  330. Oncol. Lett. Bauer 19 3 2123 2020 Effect of apigenin on whole transcriptome profile of TNFα-activated MDA-MB-468 triple negative breast cancer cells 

  331. J. Clin. Pathol. Marchiò 63 3 220 2010 10.1136/jcp.2009.073908 Adenoid cystic carcinomas of the breast and salivary glands (or ‘the strange case of Dr Jekyll and Mr Hyde’ of exocrine gland carcinomas) 

  332. Int. J. Surg. Pathol. Fusco 23 1 26 2015 10.1177/1066896914548795 The birth of an adenoid cystic carcinoma 

  333. J. Steroid Biochem. Mol. Biol. Else 165 Pt A 109 2017 10.1016/j.jsbmb.2016.03.008 Adrenocortical carcinoma in a 17th-century girl 

  334. Toxicol. Sci. Off. J. Soc. Toxicol. Sanderson 82 1 70 2004 10.1093/toxsci/kfh257 Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells 

  335. Nat. Rev. Dis. Prim. Sanli 3 2017 Bladder cancer 

  336. Int. J. Cancer Ferlay 136 5 E359 2015 10.1002/ijc.29210 Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 

  337. Roy 51 2017 Bladder Cancer: Chemoresistance and Chemosensitization, Cancer Cell Chemoresistance and Chemosensitization 

  338. J. Agric. Food Chem. Xia 66 29 7663 2018 10.1021/acs.jafc.8b02351 Apigenin suppresses the IL-1β-induced expression of the urokinase-type plasminogen activator receptor by inhibiting MAPK-mediated AP-1 and NF-κB signaling in human bladder cancer T24 cells 

  339. Drug Chem. Toxicol. Kilani-Jaziri 35 1 1 2012 10.3109/01480545.2011.564180 Flavones inhibit the proliferation of human tumor cancer cell lines by inducing apoptosis 

  340. Cancer Cell Int. Zhu 13 1 54 2013 10.1186/1475-2867-13-54 Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells 

  341. Biocell Off. J. Soc. Latinoamericanas Microscopia Electronica et. al. Liu 35 3 71 2011 Apigenin inhibits cell migration through MAPK pathways in human bladder smooth muscle cells 

  342. Cancer Treat. Rev. Wang 62 29 2018 10.1016/j.ctrv.2017.10.014 Triple negative breast cancer in Asia: an insider's view 

  343. Clinical Breast Cancer Thakur 18 3 e393 2018 10.1016/j.clbc.2017.07.013 Alarming burden of triple-negative breast cancer in India 

  344. Alkabban 2020 Breast Cancer 

  345. Anti-Cancer Drugs Jia 27 3 147 2016 10.1097/CAD.0000000000000328 Potential role of targeted therapies in the treatment of triple-negative breast cancer 

  346. Front. Pharmacol. Shanmugam 9 1294 2018 10.3389/fphar.2018.01294 Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis 

  347. J. Adv. Pharm. Technol. Res. Sharma 1 2 109 2010 Various types and management of breast cancer: an overview 

  348. J. Cell. Biochem. Liu 120 3 4504 2019 10.1002/jcb.27738 Oleuropein induces apoptosis via abrogating NF-κB activation cascade in estrogen receptor-negative breast cancer cells 

  349. Anti Cancer Agents Med. Chem. Nabavi 15 6 728 2015 10.2174/1871520615666150304120643 Apigenin and breast cancers: from chemistry to medicine 

  350. Res. Commun. Chem. Pathol. Pharmacol. Hirano 64 1 69 1989 Antiproliferative effects of synthetic and naturally occurring flavonoids on tumor cells of the human breast carcinoma cell line, ZR-75-1 

  351. Mol. Nutr. Food Res. Khan 58 3 437 2014 10.1002/mnfr.201300417 Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action 

  352. Cell Death Discov. Li 4 105 2018 10.1038/s41420-018-0124-8 Apigenin suppresses the stem cell-like properties of triple-negative breast cancer cells by inhibiting YAP/TAZ activity 

  353. Front. Pharmacol. Hong 9 220 2018 10.3389/fphar.2018.00220 Apigenin and luteolin attenuate the breaching of MDA-MB231 breast cancer spheroids through the lymph endothelial barrier in vitro 

  354. Oncol. Rep. Seo 38 2 715 2017 10.3892/or.2017.5752 Apigenin overcomes drug resistance by blocking the signal transducer and activator of transcription 3 signaling in breast cancer cells 

  355. Naunyn Schmiedeberg's Arch. Pharmacol. Vrhovac Madunić 391 5 537 2018 10.1007/s00210-018-1486-4 Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells 

  356. PLoS One Bauer 12 4 2017 10.1371/journal.pone.0175558 Apigenin inhibits TNFα/IL-1α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells 

  357. GeroScience Perrott 39 2 161 2017 10.1007/s11357-017-9970-1 Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells 

  358. Cancer Lett. Coombs 380 2 424 2016 10.1016/j.canlet.2016.06.023 Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells 

  359. J. Agric. Food Chem. Huang 64 21 4235 2016 10.1021/acs.jafc.6b00766 Chrysin, abundant in Morinda citrifolia fruit water-EtOAc extracts, combined with apigenin synergistically induced apoptosis and inhibited migration in human breast and liver cancer cells 

  360. BMC Cancer Lin 15 958 2015 10.1186/s12885-015-1965-7 Flavones inhibit breast cancer proliferation through the Akt/FOXO3a signaling pathway 

  361. Oncol. Lett. Liu 13 2 1024 2017 10.3892/ol.2016.5495 Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis 

  362. Int. J. Oncol. Weldon 26 3 763 2005 PKC-mediated survival signaling in breast carcinoma cells: a role for MEK1-AP1 signaling 

  363. J. Biol. Chem. Way 279 6 4479 2004 10.1074/jbc.M305529200 Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway 

  364. Anticancer Res. Yin 21 1a 413 2001 Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators and ERK MAP kinase activation in breast carcinoma cells 

  365. Mol. Cell. Biochem. Seo 366 1-2 319 2012 10.1007/s11010-012-1310-2 Apigenin induces apoptosis via extrinsic pathway, inducing p53 and inhibiting STAT3 and NFκB signaling in HER2-overexpressing breast cancer cells 

  366. Anticancer Res. Seo 34 6 2869 2014 Induction of caspase-dependent apoptosis by apigenin by inhibiting STAT3 signaling in HER2-overexpressing MDA-MB-453 breast cancer cells 

  367. FEBS Lett. Way 579 1 145 2005 10.1016/j.febslet.2004.11.061 Degradation of HER2/neu by apigenin induces apoptosis through cytochrome c release and caspase-3 activation in HER2/neu-overexpressing breast cancer cells 

  368. Exp. Mol. Pathol. Harrison 97 2 211 2014 10.1016/j.yexmp.2014.07.006 Exposure of breast cancer cells to a subcytotoxic dose of apigenin causes growth inhibition, oxidative stress, and hypophosphorylation of Akt 

  369. Acta Nat. Scherbakov 7 3 133 2015 10.32607/20758251-2015-7-3-133-139 Apigenin inhibits growth of breast cancer cells: the role of ERα and HER2/neu 

  370. Scanning Bai 36 6 622 2014 10.1002/sca.21170 Apigenin induced MCF-7 cell apoptosis-associated reactive oxygen species 

  371. Toxicol. Appl. Pharmacol. Lecomte 325 61 2017 10.1016/j.taap.2017.04.005 Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation 

  372. Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi China J. Chin. Mater. Med. Zhu 37 15 2317 2012 Study on estrogenic effect of genistein and apigenin in vitro 

  373. Food Chem. Toxicol. Int. J. Brit. Ind. Biol. Res. Assoc. Lau 48 10 3022 2010 10.1016/j.fct.2010.07.046 The dietary flavonoid apigenin blocks phorbol 12-myristate 13-acetate-induced COX-2 transcriptional activity in breast cell lines 

  374. Menopause (New York, N.Y.) Mafuvadze 17 5 1055 2010 10.1097/gme.0b013e3181dd052f Apigenin blocks induction of vascular endothelial growth factor mRNA and protein in progestin-treated human breast cancer cells 

  375. Oncol. Rep. Noh 24 1 277 2010 Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by apigenin via the inhibition of p38 mitogen-activated protein kinase-dependent matrix metalloproteinase-9 expression 

  376. Breast Cancer Res. BCR Chen 9 6 R80 2007 10.1186/bcr1797 Inhibition of proteasome activity by the dietary flavonoid apigenin is associated with growth inhibition in cultured breast cancer cells and xenografts 

  377. Nutr. Cancer Lindenmeyer 39 1 139 2001 10.1207/S15327914nc391_19 Apigenin acts on the tumor cell invasion process and regulates protease production 

  378. J. Nutr. Biochem. Choi 20 4 285 2009 10.1016/j.jnutbio.2008.03.005 Apigenin causes G(2)/M arrest associated with the modulation of p21(Cip1) and Cdc2 and activates p53-dependent apoptosis pathway in human breast cancer SK-BR-3 cells 

  379. J. Clin. Biochem. Nutr. Choi 44 3 260 2009 10.3164/jcbn.08-230 Apigenin induces apoptosis through a mitochondria/caspase-pathway in human breast cancer MDA-MB-453 cells 

  380. Nutrients Lecomte 11 2 237 2019 10.3390/nu11020237 Deciphering the molecular mechanisms sustaining the estrogenic activity of the two major dietary compounds zearalenone and apigenin in er-positive breast cancer cell lines 

  381. Mol. Cancer Ther. Long 7 7 2096 2008 10.1158/1535-7163.MCT-07-2350 Apigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-alpha-dependent and estrogen receptor-alpha-independent mechanisms 

  382. Breast Cancer Res. Treat. Seo 99 2 121 2006 10.1007/s10549-006-9191-2 Stimulatory effect of genistein and apigenin on the growth of breast cancer cells correlates with their ability to activate ER alpha 

  383. Neoplasia (New York, N.Y.) Mak 8 11 896 2006 10.1593/neo.06538 Apigenin suppresses cancer cell growth through ERbeta 

  384. Nutr. Cancer Mafuvadze 65 8 1184 2013 10.1080/01635581.2013.833637 Effects of dietary apigenin on tumor latency, incidence and multiplicity in a medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced breast cancer model 

  385. Lancet (London, England) Cohen 393 10167 169 2019 10.1016/S0140-6736(18)32470-X Cervical cancer 

  386. Kumar 718 2007 Robbins Basic Pathology 

  387. Pharmacol. Res. Banik 153 2020 10.1016/j.phrs.2020.104635 Piceatannol: a natural stilbene for the prevention and treatment of cancer 

  388. Banik 163 2018 Potential of Different Chemosensitizers to Overcome Chemoresistance in Cervical Cancer, Cancer Cell Chemoresistance and Chemosensitization 

  389. Apoptosis Int. J. Programmed Cell Death Ningegowda 22 1 145 2017 10.1007/s10495-016-1312-8 A novel 4,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazole derivative inhibits tumor cell invasion and potentiates the apoptotic effect of TNFα by abrogating NF-κB activation cascade 

  390. Molecules (Basel, Switzerland) Zhang 25 8 2020 10.3390/molecules25081960 Apigenin inhibits histamine-induced cervical cancer tumor growth by regulating estrogen receptor expression 

  391. Oncotarget Yang 8 28 46145 2017 10.18632/oncotarget.17574 Bioinformatics and in vitro experimental analyses identify the selective therapeutic potential of interferon gamma and apigenin against cervical squamous cell carcinoma and adenocarcinoma 

  392. Int. J. Cancer Czyz 114 1 12 2005 10.1002/ijc.20620 Flavonoid apigenin inhibits motility and invasiveness of carcinoma cells in vitro 

  393. Mol. Med. Rep. Liu 11 1 665 2015 10.3892/mmr.2014.2720 Apigenin inhibits HeLa sphere-forming cells through inactivation of casein kinase 2α 

  394. Life Sci. Zheng 76 12 1367 2005 10.1016/j.lfs.2004.08.023 Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells 

  395. PLoS One Xu 6 12 2011 10.1371/journal.pone.0029169 Synergistic effects of apigenin and paclitaxel on apoptosis of cancer cells 

  396. Nat. Rev. Dis. Prim. Kuipers 1 2015 Colorectal cancer 

  397. Nutrients Buhrmann 11 3 704 2019 10.3390/nu11030704 Induction of the epithelial-to-mesenchymal transition of human colorectal cancer by human TNF-β (Lymphotoxin) and its reversal by resveratrol 

  398. Nutrients Buhrmann 11 12 2904 2019 10.3390/nu11122904 Evidence that Calebin A, a component of Curcuma longa suppresses NF-B mediated proliferation, invasion and metastasis of human colorectal cancer induced by TNF-β (Lymphotoxin) 

  399. Int. J. Mol. Sci. Buhrmann 21 7 2393 2020 10.3390/ijms21072393 Calebin a potentiates the effect of 5-FU and TNF-β (Lymphotoxin α) against human colorectal cancer cells: potential role of NF-κB 

  400. Biomedicines. Buhrmann 8 8 2020 10.3390/biomedicines8080236 Targeting NF-κB signaling by Calebin A, a compound of turmeric, in multicellular tumor microenvironment: potential role of apoptosis induction in CRC cells 

  401. Int. J. Cancer Kunnumakkara 125 9 2187 2009 10.1002/ijc.24593 Curcumin sensitizes human colorectal cancer to capecitabine by modulation of cyclin D1, COX-2, MMP-9, VEGF and CXCR4 expression in an orthotopic mouse model 

  402. Curr. Colorectal Cancer Rep. Kunnumakkara 5 1 5 2009 10.1007/s11888-009-0002-0 Curcumin and colorectal cancer: add spice to your life 

  403. Oncotarget Ai 8 59 100216 2017 10.18632/oncotarget.22145 Apigenin inhibits colonic inflammation and tumorigenesis by suppressing STAT3-NF-κB signaling 

  404. J. Agric. Food Chem. Shan 65 37 8136 2017 10.1021/acs.jafc.7b02757 Apigenin restrains colon cancer cell proliferation via targeted blocking of pyruvate kinase M2-dependent glycolysis 

  405. J. Nutr. Biochem. Chunhua 24 10 1766 2013 10.1016/j.jnutbio.2013.03.006 Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT 

  406. J. Med. Food Turktekin 14 10 1107 2011 10.1089/jmf.2010.0208 Evaluation of the effects of the flavonoid apigenin on apoptotic pathway gene expression on the colon cancer cell line (HT29) 

  407. J. B.U.ON. Off. J. Balkan Union Oncol. Chen 24 2 488 2019 Apigenin inhibits in vitro and in vivo tumorigenesis in cisplatin-resistant colon cancer cells by inducing autophagy, programmed cell death and targeting m-TOR/PI3K/Akt signalling pathway 

  408. Nat. Prod. Res. Hamadou 1 2019 Apigenin rich-Limonium duriusculum (de Girard) Kuntze promotes apoptosis in HCT116 cancer cells 

  409. Mol. Carcinog. Wang 28 2 102 2000 10.1002/1098-2744(200006)28:2<102::AID-MC6>3.0.CO;2-2 Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines 

  410. Nutr. Cancer Wang 48 1 106 2004 10.1207/s15327914nc4801_14 Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines 

  411. Mol. Carcinog. Chung 46 9 773 2007 10.1002/mc.20306 Impact of adenomatous polyposis coli (APC) tumor supressor gene in human colon cancer cell lines on cell cycle arrest by apigenin 

  412. PLoS One Iizumi 8 8 2013 10.1371/journal.pone.0073219 The flavonoid apigenin downregulates CDK1 by directly targeting ribosomal protein S9 

  413. Redox Biol. Banerjee 5 153 2015 10.1016/j.redox.2015.04.009 Oxidative stress triggered by naturally occurring flavone apigenin results in senescence and chemotherapeutic effect in human colorectal cancer cells 

  414. Toxicol. Appl. Pharmacol. Dai 311 106 2016 10.1016/j.taap.2016.09.016 Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells 

  415. Toxicol. Appl. Pharmacol. Wang 272 1 108 2013 10.1016/j.taap.2013.05.028 Apigenin suppresses migration and invasion of transformed cells through down-regulation of C-X-C chemokine receptor 4 expression 

  416. Evidence-based Complement. Altern. Med. eCAM Wang 2017 3684581 2017 Apigenin inhibits human SW620 cell growth by targeting polyamine catabolism 

  417. Clin. Experim. Metastasis Lefort 28 4 337 2011 10.1007/s10585-010-9364-6 The dietary flavonoid apigenin enhances the activities of the anti-metastatic protein CD26 on human colon carcinoma cells 

  418. Biosci. Rep. Tong 39 5 2019 10.1042/BSR20190452 Apigenin inhibits epithelial-mesenchymal transition of human colon cancer cells through NF-κB/snail signaling pathway 

  419. Oncol. Lett. Wang 2 1 43 2011 10.3892/ol.2010.215 Apigenin suppresses the growth of colorectal cancer xenografts via phosphorylation and up-regulated FADD expression 

  420. Eur. J. Cancer (Oxford, England: 1990) Zhong 46 18 3365 2010 10.1016/j.ejca.2010.07.007 Molecular targets of apigenin in colorectal cancer cells: involvement of p21, NAG-1 and p53 

  421. Int. J. Oncol. Takagaki 26 1 185 2005 Apigenin induces cell cycle arrest and p21/WAF1 expression in a p53-independent pathway 

  422. Experim. Biol. Med. (Maywood, N.J.) Leonardi 235 6 710 2010 10.1258/ebm.2010.009359 Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats 

  423. Am. J. Physiol. Gastrointest. Liver Physiol. Farah 285 5 G919 2003 10.1152/ajpgi.00205.2003 5,6-Dichloro-ribifuranosylbenzimidazole- and apigenin-induced sensitization of colon cancer cells to TNF-alpha-mediated apoptosis 

  424. Am. Fam. Physician Short 95 1 22 2017 Esophageal cancer 

  425. Bordoloi 241 2018 Different Approaches to Overcome Chemoresistance in Esophageal Cancer, Cancer Cell Chemoresistance and Chemosensitization 

  426. Scanning Zhu 38 4 322 2016 10.1002/sca.21273 Apigenin induced apoptosis in esophageal carcinoma cells by destruction membrane structures 

  427. Front. Pharmacol. Qiu 10 1002 2019 10.3389/fphar.2019.01002 Apigenin inhibits IL-6 transcription and suppresses esophageal carcinogenesis 

  428. Toxicol. In Vitro Int. J. Assoc. BIBRA Zhang 23 5 797 2009 10.1016/j.tiv.2009.04.007 Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis 

  429. Cancer Metastasis Rev Sexton 39 1179 2020 10.1007/s10555-020-09925-3 Gastric cancer: a comprehensive review of current and future treatment strategies 

  430. Cancer Lett. Manu 363 1 28 2015 10.1016/j.canlet.2015.03.033 Isorhamnetin augments the anti-tumor effect of capecitabine through the negative regulation of NF-κB signaling cascade in gastric cancer 

  431. Choudhary 267 2017 Different Chemosensitization Approaches in Gastric Cancer, Cancer Cell Chemoresistance and Chemosensitization 

  432. J. Mol. Med. (Berlin, Germany) Manu 92 3 267 2014 10.1007/s00109-013-1095-0 Simvastatin sensitizes human gastric cancer xenograft in nude mice to capecitabine by suppressing nuclear factor-kappa B-regulated gene products 

  433. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. Chen 35 8 7719 2014 10.1007/s13277-014-2014-x The apoptotic effect of apigenin on human gastric carcinoma cells through mitochondrial signal pathway 

  434. World J. Gastroenterol. Wu 11 29 4461 2005 10.3748/wjg.v11.i29.4461 Inhibitory effects of apigenin on the growth of gastric carcinoma SGC-7901 cells 

  435. J. Neuro-Oncol. Bleeker 108 1 11 2012 10.1007/s11060-011-0793-0 Recent advances in the molecular understanding of glioblastoma 

  436. Khwairakpam 107 2017 Chemoresistance in Brain Cancer and Different Chemosensitization Approaches, Cancer Cell Chemoresistance and Chemosensitization 

  437. Food Chem. Toxicol. Int. J. Brit. Ind. Biol. Res. Assoc. Seibert 49 9 2398 2011 10.1016/j.fct.2011.06.055 Cytoprotective activity against peroxide-induced oxidative damage and cytotoxicity of flavonoids in C6 rat glioma cells 

  438. Tumour Biol. J. Int. Soc. Oncodevelop. Biol. Med. Wan 39 4 2017 miR-423-5p knockdown enhances the sensitivity of glioma stem cells to apigenin through the mitochondrial pathway 

  439. J. Pharm. Pharmacol. Stump 69 7 907 2017 10.1111/jphp.12718 The antiproliferative and apoptotic effects of apigenin on glioblastoma cells 

  440. Biochem. Biophys. Res. Commun. Sato 204 2 578 1994 10.1006/bbrc.1994.2498 Apigenin induces morphological differentiation and G2-M arrest in rat neuronal cells 

  441. Phytother. Res. PTR Kim 30 11 1833 2016 10.1002/ptr.5689 Apigenin inhibits cancer stem cell-like phenotypes in human glioblastoma cells via suppression of c-Met signaling 

  442. Chem. Biol. Interact. Santos 242 123 2015 10.1016/j.cbi.2015.07.014 Flavonoids suppress human glioblastoma cell growth by inhibiting cell metabolism, migration, and by regulating extracellular matrix proteins and metalloproteinases expression 

  443. Cancer Das 116 1 164 2010 10.1002/cncr.24699 Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes 

  444. Nat. Rev. Clin. Oncol. Cramer 16 11 669 2019 10.1038/s41571-019-0227-z The changing therapeutic landscape of head and neck cancer 

  445. Phytomed. Int. J. Phytother. Phytopharmacol. Baek 23 5 566 2016 Resveratrol inhibits STAT3 signaling pathway through the induction of SOCS-1: role in apoptosis induction and radiosensitization in head and neck tumor cells 

  446. Thakur 399 2017 Different Chemosensitization Approaches for the Effective Management of HNSCC, Cancer Cell Chemoresistance and Chemosensitization 

  447. Oncotarget Li 6 7 5147 2015 10.18632/oncotarget.2881 Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers 

  448. Oncotarget Selvi 6 41 43806 2015 10.18632/oncotarget.6245 Inhibition of p300 lysine acetyltransferase activity by luteolin reduces tumor growth in head and neck squamous cell carcinoma (HNSCC) xenograft mouse model 

  449. Arch. Oral Biol. Ketkaew 74 69 2017 10.1016/j.archoralbio.2016.11.010 Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line 

  450. Biochim. Biophys. Acta Chan 1820 7 1081 2012 10.1016/j.bbagen.2012.04.013 Apigenin induces apoptosis via tumor necrosis factor receptor- and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcinoma to 5-fluorouracil and cisplatin 

  451. Front. Biosci. (Landmark Edit.) Masuelli 16 1060 2011 10.2741/3735 Apigenin induces apoptosis and impairs head and neck carcinomas EGFR/ErbB2 signaling 

  452. Oral Surg Oral Med Oral Pathol Oral Radiol Swanson 117 2 214 2014 10.1016/j.oooo.2013.10.012 Impact of apigenin and kaempferol on human head and neck squamous cell carcinoma 

  453. Med. Oral Patol. Oral Cirugia Bucal Dhanuthai 23 1 e23 2018 Oral cancer: a multicenter study 

  454. Cancers Monisha 10 7 228 2018 10.3390/cancers10070228 NGAL is downregulated in oral squamous cell carcinoma and leads to increased survival, proliferation, migration and chemoresistance 

  455. Asian Pac. J. Cancer Prevent. APJCP Bordoloi 20 11 3437 2019 10.31557/APJCP.2019.20.11.3437 An investigation on the therapeutic potential of butein, a tretrahydroxychalcone against human oral squamous cell carcinoma 

  456. Eur. J. Pharmacol. Silvan 670 2-3 571 2011 10.1016/j.ejphar.2011.09.179 Chemopreventive potential of apigenin in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis 

  457. Arch. Oral Biol. Baldasquin-Caceres 59 10 1101 2014 10.1016/j.archoralbio.2014.06.007 Chemopreventive potential of phenolic compounds in oral carcinogenesis 

  458. Anticancer Res. Yin 19 5b 4297 1999 Signal pathways involved in apigenin inhibition of growth and induction of apoptosis of human anaplastic thyroid cancer cells (ARO) 

  459. Mol. Cell. Endocrinol. Kim 369 1-2 130 2013 10.1016/j.mce.2013.01.012 Apigenin induces c-Myc-mediated apoptosis in FRO anaplastic thyroid carcinoma cells 

  460. J. Endocrinol. Investig. Kim 36 11 1099 2013 Akt inhibition enhances the cytotoxic effect of apigenin in combination with PLX4032 in anaplastic thyroid carcinoma cells harboring BRAFV600E 

  461. Thyroid Off. J. Am. Thyroid Assoc. Lakshmanan 24 5 878 2014 10.1089/thy.2013.0614 Apigenin in combination with Akt inhibition significantly enhances thyrotropin-stimulated radioiodide accumulation in thyroid cells 

  462. Oncotarget Lakshmanan 6 31 31792 2015 10.18632/oncotarget.5172 Modulation of thyroidal radioiodide uptake by oncological pipeline inhibitors and Apigenin 

  463. Int. J. Clin. Exp. Pathol. Xu 7 7 3938 2014 Apigenin suppresses GLUT-1 and p-AKT expression to enhance the chemosensitivity to cisplatin of laryngeal carcinoma Hep-2 cells: an in vitro study 

  464. Biosci. Rep. Zhang 38 3 2018 10.1042/BSR20180456 Apigenin inhibits C5a-induced proliferation of human nasopharyngeal carcinoma cells through down-regulation of C5aR 

  465. Biomed. Pharmacother. Biomed. Pharmacother. Hu 102 681 2018 10.1016/j.biopha.2018.03.111 Apigenin enhances the antitumor effects of cetuximab in nasopharyngeal carcinoma by inhibiting EGFR signaling 

  466. Progress Tumor Res. Juliusson 43 87 2016 10.1159/000447076 Leukemia 

  467. J. Med. Food Anter 14 3 276 2011 10.1089/jmf.2010.0139 Antigenotoxicity, cytotoxicity, and apoptosis induction by apigenin, bisabolol, and protocatechuic acid 

  468. Eur. J. Nutr. Nakazaki 52 1 25 2013 10.1007/s00394-011-0282-4 Proteomic study of granulocytic differentiation induced by apigenin 7-glucoside in human promyelocytic leukemia HL-60 cells 

  469. Food Chem. Toxicol. Int. J. Brit. Ind. Biol. Res. Assoc. Jayasooriya 50 8 2605 2012 10.1016/j.fct.2012.05.024 Apigenin decreases cell viability and telomerase activity in human leukemia cell lines 

  470. Arch. Biochem. Biophys. Miyoshi 466 2 274 2007 10.1016/j.abb.2007.07.026 Dietary flavonoid apigenin is a potential inducer of intracellular oxidative stress: the role in the interruptive apoptotic signal 

  471. Eur. J. Cancer (Oxford, England 1990) Wang 35 10 1517 1999 10.1016/S0959-8049(99)00168-9 Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells 

  472. Biochem. Pharmacol. Vargo 72 6 681 2006 10.1016/j.bcp.2006.06.010 Apigenin-induced-apoptosis is mediated by the activation of PKCdelta and caspases in leukemia cells 

  473. Acta Med. Iran. Hashemi 48 5 283 2010 Anti-mutagenic and pro-apoptotic effects of apigenin on human chronic lymphocytic leukemia cells 

  474. Target. Oncol. Swamy 12 1 1 2017 10.1007/s11523-016-0452-7 Targeting multiple oncogenic pathways for the treatment of hepatocellular carcinoma 

  475. Singh 373 2017 Different Methods to Inhibit Chemoresistance in Hepatocellular Carcinoma, Cancer Cell Chemoresistance and Chemosensitization 

  476. Cancers Raghunath 10 12 481 2018 10.3390/cancers10120481 Dysregulation of Nrf2 in hepatocellular carcinoma: role in cancer progression and chemoresistance 

  477. J. Biol. Chem. Mohan 289 49 34296 2014 10.1074/jbc.M114.601104 Development of a novel azaspirane that targets the Janus kinase-signal transducer and activator of transcription (STAT) pathway in hepatocellular carcinoma in vitro and in vivo 

  478. Mol. Cancer Ther. Dai 15 12 2966 2016 10.1158/1535-7163.MCT-16-0391 Ascochlorin enhances the sensitivity of doxorubicin leading to the reversal of epithelial-to-mesenchymal transition in hepatocellular carcinoma 

  479. Biomed. Pharmacother. Biomed. Pharmacother. Yang 103 699 2018 10.1016/j.biopha.2018.04.072 Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells 

  480. Oncotarget Qin 7 27 41421 2016 10.18632/oncotarget.9404 Apigenin inhibits NF-κB and snail signaling, EMT and metastasis in human hepatocellular carcinoma 

  481. Biochem. Biophys. Res. Commun. Li 487 1 122 2017 10.1016/j.bbrc.2017.04.029 Application of molecular imaging technology in evaluating the inhibiting effect of apigenin in vivo on subcutaneous hepatocellular carcinoma 

  482. Pathol. Res. Pract. Li 216 1 2020 10.1016/j.prp.2019.152701 Apigenin, a flavonoid constituent derived from P. villosa, inhibits hepatocellular carcinoma cell growth by CyclinD1/CDK4 regulation via p38 MAPK-p21 signaling 

  483. Anti Cancer Agents Med. Chem. Seydi 16 12 1576 2016 10.2174/1871520616666160425110839 Selective toxicity of apigenin on cancerous hepatocytes by directly targeting their mitochondria 

  484. Clin. Exp. Pharmacol. Physiol. Hu 42 2 146 2015 10.1111/1440-1681.12333 5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (ΔΨm)-mediated apoptosis in hepatocellular carcinoma 

  485. Carcinogenesis Gao 34 8 1806 2013 10.1093/carcin/bgt108 Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway 

  486. Gene Şirin 737 2020 10.1016/j.gene.2020.144428 Investigation of possible effects of apigenin, sorafenib and combined applications on apoptosis and cell cycle in hepatocellular cancer cells 

  487. Mol. Cells Kim 35 1 32 2013 10.1007/s10059-013-2175-2 Sub-toxic dose of apigenin sensitizes HepG2 cells to TRAIL through ERK-dependent up-regulation of TRAIL receptor DR5 

  488. Food Chem. Toxicol. Int. J. Brit. Ind. Biol. Res. Assoc. Kang 111 623 2018 10.1016/j.fct.2017.12.018 Apigenin promotes TRAIL-mediated apoptosis regardless of ROS generation 

  489. Toxicology Khan 217 2-3 206 2006 10.1016/j.tox.2005.09.019 Apigenin induces apoptosis in Hep G2 cells: possible role of TNF-alpha and IFN-gamma 

  490. Chem. Biol. Interact. Valdameri 193 2 180 2011 10.1016/j.cbi.2011.06.009 Involvement of catalase in the apoptotic mechanism induced by apigenin in HepG2 human hepatoma cells 

  491. Food Chem. Toxicol. Int. J. Brit. Ind. Biol. Res. Assoc. Kim 49 7 1626 2011 10.1016/j.fct.2011.04.015 A mechanism of apigenin-induced apoptosis is potentially related to anti-angiogenesis and anti-migration in human hepatocellular carcinoma cells 

  492. Cancer Lett. Chiang 237 2 207 2006 10.1016/j.canlet.2005.06.002 Anti-proliferative effect of apigenin and its apoptotic induction in human Hep G2 cells 

  493. Arch. Pharm. Res. Choi 30 10 1328 2007 10.1007/BF02980274 Mechanism of apoptosis induced by apigenin in HepG2 human hepatoma cells: involvement of reactive oxygen species generated by NADPH oxidase 

  494. Phytomed. Int. J. Phytother. Phytopharmacol. Cai 18 5 366 2011 Apigenin inhibits hepatoma cell growth through alteration of gene expression patterns 

  495. Mol. Carcinog. Jeyabal 44 1 11 2005 10.1002/mc.20115 Apigenin inhibits oxidative stress-induced macromolecular damage in N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinogenesis in Wistar albino rats 

  496. Phytomed. Int. J. Phytother. Phytopharmacol. Singh 11 4 309 2004 Protective role of Apigenin on the status of lipid peroxidation and antioxidant defense against hepatocarcinogenesis in Wistar albino rats 

  497. Clin. Chest Med. Dela Cruz 32 4 605 2011 10.1016/j.ccm.2011.09.001 Lung cancer: epidemiology, etiology, and prevention 

  498. Cancer Lett. Wang 417 152 2018 10.1016/j.canlet.2017.12.030 Pan-HDAC inhibition by panobinostat mediates chemosensitization to carboplatin in non-small cell lung cancer via attenuation of EGFR signaling 

  499. Cancer Prev. Res. (Phila.) Quinn 6 8 801 2013 10.1158/1940-6207.CAPR-13-0058-T Inhibition of lung tumorigenesis by metformin is associated with decreased plasma IGF-I and diminished receptor tyrosine kinase signaling 

  500. Biomolecules Bordoloi 9 12 836 2019 10.3390/biom9120836 TIPE2 induced the proliferation, survival, and migration of lung cancer cells through modulation of Akt/mTOR/NF-κB signaling cascade 

  501. Cancers Jung 11 1 49 2019 10.3390/cancers11010049 Oxymatrine attenuates tumor growth and deactivates STAT5 signaling in a lung cancer xenograft model 

  502. Med Clin North Am Nasim 103 3 463 2019 10.1016/j.mcna.2018.12.006 Lung Cancer 

  503. J. Experim. Clin. Cancer Res. CR Chang 37 1 199 2018 10.1186/s13046-018-0869-1 Downregulating CD 26/DPPIV by apigenin modulates the interplay between Akt and Snail/Slug signaling to restrain metastasis of lung cancer with multiple EGFR statuses 

  504. Int. J. Mol. Med. Kim 34 2 592 2014 10.3892/ijmm.2014.1804 Axl receptor tyrosine kinase is a novel target of apigenin for the inhibition of cell proliferation 

  505. Int. J. Nanomedicine Jin 12 5109 2017 10.2147/IJN.S140096 Synergistic apoptotic effects of apigenin TPGS liposomes and tyroservatide: implications for effective treatment of lung cancer 

  506. Mol. Pharmacol. Liu 68 3 635 2005 10.1124/mol.105.011254 Apigenin inhibits expression of vascular endothelial growth factor and angiogenesis in human lung cancer cells: implication of chemoprevention of lung cancer 

  507. Int. J. Oncol. Lee 48 1 399 2016 10.3892/ijo.2015.3243 Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress 

  508. Zhong Nan Da Xue Xue Bao. Yi Xue Ban J. Central South Univ. Med. Sci. Shu 41 11 1124 2016 Effects of apigenin on self-renewal and uPAR expression in NCI-H446 cell line 

  509. Anti-Cancer Drugs Zhou 28 4 446 2017 10.1097/CAD.0000000000000479 Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line 

  510. Experim. Biol. Med. (Maywood, N.J.) Das 237 12 1433 2012 10.1258/ebm.2012.012148 Apigenin-induced apoptosis in A375 and A549 cells through selective action and dysfunction of mitochondria 

  511. Nan Fang Yi Ke Da Xue Xue Bao J. South. Med. Univ. Pan 33 8 1137 2013 Effect of apigenin on proliferation and apoptosis of human lung cancer NCI-H460 cells 

  512. Int. J. Oncol. Lu 36 6 1477 2010 Apigenin induces caspase-dependent apoptosis in human lung cancer A549 cells through Bax- and Bcl-2-triggered mitochondrial pathway 

  513. Human Experim. Toxicol. Lu 30 8 1053 2011 10.1177/0960327110386258 Apigenin induces apoptosis in human lung cancer H460 cells through caspase- and mitochondria-dependent pathways 

  514. Biochimie Choudhury 95 6 1297 2013 10.1016/j.biochi.2013.02.010 Apigenin shows synergistic anticancer activity with curcumin by binding at different sites of tubulin 

  515. Eur. J. Cancer (Oxford, England 1990) Bruno 47 13 2042 2011 10.1016/j.ejca.2011.03.034 Apigenin affects leptin/leptin receptor pathway and induces cell apoptosis in lung adenocarcinoma cell line 

  516. Front. Pharmacol. Chen 10 260 2019 10.3389/fphar.2019.00260 Apigenin combined with gefitinib blocks autophagy flux and induces apoptotic cell death through inhibition of HIF-1α, c-Myc, p-EGFR, and glucose metabolism in EGFR L858R+T790M-mutated H1975 cells 

  517. Zhejiang Da Xue Xue Bao. Yi Xue Ban J. Zhejiang Univ. Med. Sci. Ren 40 5 508 2011 Anti-proliferation and chemo-sensitization effects of apigenin on human lung cancer cells 

  518. Lancet (Lond. Engl.) Maris 369 9579 2106 2007 10.1016/S0140-6736(07)60983-0 Neuroblastoma 

  519. Children (Basel, Switzerland) Van Arendonk 6 1 12 2019 Neuroblastoma: tumor biology and its implications for staging and treatment 

  520. Mol. Cancer Ther. Torkin 4 1 1 2005 10.1158/1535-7163.1.4.1 Induction of caspase-dependent, p53-mediated apoptosis by apigenin in human neuroblastoma 

  521. J. Mol. Neurosci. MN Chakrabarti 51 1 187 2013 10.1007/s12031-013-9975-x Sequential hTERT knockdown and apigenin treatment inhibited invasion and proliferation and induced apoptosis in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cells 

  522. Exp. Cell Res. Chakrabarti 319 10 1575 2013 10.1016/j.yexcr.2013.02.025 miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo 

  523. Mol. Oncol. Mohan 7 3 464 2013 10.1016/j.molonc.2012.12.002 KLF4 overexpression and apigenin treatment down regulated anti-apoptotic Bcl-2 proteins and matrix metalloproteinases to control growth of human malignant neuroblastoma SK-N-DZ and IMR-32 cells 

  524. Biochem. Biophys. Res. Commun. Karmakar 388 4 705 2009 10.1016/j.bbrc.2009.08.071 Bcl-2 inhibitor and apigenin worked synergistically in human malignant neuroblastoma cell lines and increased apoptosis with activation of extrinsic and intrinsic pathways 

  525. Gene Hossain 529 1 27 2013 10.1016/j.gene.2013.07.094 N-Myc knockdown and apigenin treatment controlled growth of malignant neuroblastoma cells having N-Myc amplification 

  526. Arch. Pathol. Lab. Med. Sangle 136 5 572 2012 10.5858/arpa.2011-0204-RS Telangiectatic osteosarcoma 

  527. Acta Orthop. Belg. Biazzo 82 4 690 2016 Multidisciplinary approach to osteosarcoma 

  528. Padmavathi 81 2017 Mechanism of Chemoresistance in Bone Cancer and Different Chemosensitization Approaches, Cancer Cell Chemoresistance and Chemosensitization 

  529. J. Turk. German Gynecol. Assoc. Budiana 20 1 47 2019 10.4274/jtgga.galenos.2018.2018.0119 Ovarian cancer: pathogenesis and current recommendations for prophylactic surgery 

  530. Choudhary 529 2017 Cancer Cell Chemoresistance and Chemosensitization Strategies to overcome chemoresistance in ovarian cancer 

  531. FEBS Lett. Li 583 12 1999 2009 10.1016/j.febslet.2009.05.013 Apigenin inhibits proliferation of ovarian cancer A2780 cells through Id1 

  532. Mol. Med. Rep. Tang 11 3 2221 2015 10.3892/mmr.2014.2974 Apigenin inhibits the self-renewal capacity of human ovarian cancer SKOV3-derived sphere-forming cells 

  533. Toxicol. Res. Ittiudomrak 35 2 167 2019 10.5487/TR.2019.35.2.167 α-Mangostin and apigenin induced cell cycle arrest and programmed cell death in SKOV-3 ovarian cancer cells 

  534. Biomed. Pharmacother. Biomed. Pharmacother. Tavsan 116 2019 Flavonoids showed anticancer effects on the ovarian cancer cells: involvement of reactive oxygen species, apoptosis, cell cycle and invasion 

  535. Nutr. Cancer Luo 60 6 800 2008 10.1080/01635580802100851 Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids 

  536. Carcinogenesis Hu 29 12 2369 2008 10.1093/carcin/bgn244 Apigenin inhibited migration and invasion of human ovarian cancer A2780 cells through focal adhesion kinase 

  537. Int. J. Mol. Sci. He 13 6 7271 2012 10.3390/ijms13067271 Oral administration of apigenin inhibits metastasis through AKT/P70S6K1/MMP-9 pathway in orthotopic ovarian tumor model 

  538. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. Dhillon 14 14 4491 2008 10.1158/1078-0432.CCR-08-0024 Phase II trial of curcumin in patients with advanced pancreatic cancer 

  539. World J. Gastroenterol. McGuigan 24 43 4846 2018 10.3748/wjg.v24.i43.4846 Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes 

  540. N. Engl. J. Med. Ryan 371 11 1039 2014 10.1056/NEJMra1404198 Pancreatic adenocarcinoma 

  541. Int. J. Cancer Kunnumakkara 131 3 E292 2012 10.1002/ijc.26442 Zyflamend suppresses growth and sensitizes human pancreatic tumors to gemcitabine in an orthotopic mouse model through modulation of multiple targets 

  542. Sailo 557 2017 Cancer Cell Chemoresistance and Chemosensitization Molecular alterations involved in pancreatic cancer chemoresistance and chemosensitization strategies 

  543. Int. J. Cancer Harikumar 127 2 257 2010 10.1002/ijc.25041 Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer 

  544. J. Clin. Oncol. Dhillon 25 4599 2007 10.1200/jco.2007.25.18_suppl.4599 Curcumin and pancreatic cancer: phase II clinical trial experience 

  545. PLoS One Nelson 12 2 2017 10.1371/journal.pone.0170197 Apigenin: selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer 

  546. Toxicol. Lett. Wu 224 1 157 2014 10.1016/j.toxlet.2013.10.007 Apigenin potentiates the growth inhibitory effects by IKK-β-mediated NF-κB activation in pancreatic cancer cells 

  547. Mol. Cancer Ujiki 5 76 2006 10.1186/1476-4598-5-76 Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest 

  548. Mol. Nutr. Food Res. Johnson 57 12 2112 2013 10.1002/mnfr.201300307 Flavonoid apigenin modified gene expression associated with inflammation and cancer and induced apoptosis in human pancreatic cancer cells through inhibition of GSK-3β/NF-κB signaling cascade 

  549. Food Chem. Toxicol. Int. J. Brit. Ind. Biol. Res. Assoc. Johnson 60 83 2013 10.1016/j.fct.2013.07.036 Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro 

  550. J. Experim. Clin. Cancer Res. CR Chien 38 1 246 2019 10.1186/s13046-019-1247-3 Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis 

  551. Biochim. Biophys. Acta King 1823 2 593 2012 10.1016/j.bbamcr.2011.12.008 Evidence for activation of mutated p53 by apigenin in human pancreatic cancer 

  552. Pancreas Melstrom 37 4 426 2008 10.1097/MPA.0b013e3181735ccb Apigenin inhibits the GLUT-1 glucose transporter and the phosphoinositide 3-kinase/Akt pathway in human pancreatic cancer cells 

  553. J. Surg. Res. Melstrom 167 2 173 2011 10.1016/j.jss.2010.10.041 Apigenin down-regulates the hypoxia response genes: HIF-1α, GLUT-1, and VEGF in human pancreatic cancer cells 

  554. Mol. Carcinog. Salabat 47 11 835 2008 10.1002/mc.20441 Geminin is overexpressed in human pancreatic cancer and downregulated by the bioflavanoid apigenin in pancreatic cancer cell lines 

  555. Pancreas Strouch 38 4 409 2009 10.1097/MPA.0b013e318193a074 The flavonoid apigenin potentiates the growth inhibitory effects of gemcitabine and abrogates gemcitabine resistance in human pancreatic cancer cells 

  556. Cancer Lett. Lee 259 1 39 2008 10.1016/j.canlet.2007.09.015 Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer 

  557. Jama Litwin 317 24 2532 2017 10.1001/jama.2017.7248 The diagnosis and treatment of prostate cancer: a review 

  558. Prostate Muralimanoharan 69 5 494 2009 10.1002/pros.20899 Butanol fraction containing berberine or related compound from nexrutine inhibits NFkappaB signaling and induces apoptosis in prostate cancer cells 

  559. Apoptosis Int. J. Program. Cell Death Zhang 22 1 158 2017 10.1007/s10495-016-1313-7 Cardamonin represses proliferation, invasion, and causes apoptosis through the modulation of signal transducer and activator of transcription 3 pathway in prostate cancer 

  560. Cancer Prev. Res. (Phila.) Heymach 4 10 1590 2011 10.1158/1940-6207.CAPR-10-0136 Effect of low-fat diets on plasma levels of NF-κB-regulated inflammatory cytokines and angiogenic factors in men with prostate cancer 

  561. Antioxid. Redox Signal. Zhang 24 11 575 2016 10.1089/ars.2015.6418 Nimbolide-induced oxidative stress abrogates STAT3 signaling cascade and inhibits tumor growth in transgenic adenocarcinoma of mouse prostate model 

  562. Padmavathi 583 2017 Different Chemosensitization Approaches to Overcome Chemoresistance in Prostate Cancer, Cancer Cell Chemoresistance and Chemosensitization 

  563. Life Sci. Erdogan 162 77 2016 10.1016/j.lfs.2016.08.019 The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-κB signaling 

  564. Fitoterapia Wang 111 66 2016 10.1016/j.fitote.2016.04.014 Suppression of rat and human androgen biosynthetic enzymes by apigenin: possible use for the treatment of prostate cancer 

  565. Eur. J. Nutr. Singh 54 8 1255 2015 10.1007/s00394-014-0803-z Apigenin manipulates the ubiquitin-proteasome system to rescue estrogen receptor-β from degradation and induce apoptosis in prostate cancer cells 

  566. Mol. Med. Rep. Zhu 11 2 1004 2015 10.3892/mmr.2014.2801 Apigenin inhibits migration and invasion via modulation of epithelial mesenchymal transition in prostate cancer 

  567. Apoptosis Int. J. Program. Cell Death Shukla 19 5 883 2014 10.1007/s10495-014-0971-6 Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70-Bax interaction in prostate cancer 

  568. PLoS One Oishi 8 2 2013 10.1371/journal.pone.0055922 Apigenin sensitizes prostate cancer cells to Apo2L/TRAIL by targeting adenine nucleotide translocase-2 

  569. Mol. Carcinog. Mirzoeva 53 8 598 2014 10.1002/mc.22005 Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3- and Src-dependent mechanism 

  570. Mol. Carcinog. Pandey 51 12 952 2012 10.1002/mc.20866 Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: in vitro and in vivo study 

  571. Cancer Prev. Res. (Phila.) Franzen 2 9 830 2009 10.1158/1940-6207.CAPR-09-0066 The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism 

  572. Mol. Carcinog. Shukla 48 3 243 2009 10.1002/mc.20475 Apigenin suppresses insulin-like growth factor I receptor signaling in human prostate cancer: an in vitro and in vivo study 

  573. Carcinogenesis Kaur 29 11 2210 2008 10.1093/carcin/bgn201 Plant flavonoid apigenin inactivates Akt to trigger apoptosis in human prostate cancer: an in vitro and in vivo study 

  574. J. Korean Med. Sci. Seo 26 11 1489 2011 10.3346/jkms.2011.26.11.1489 Apoptotic effects of genistein, biochanin-A and apigenin on LNCaP and PC-3 cells by p21 through transcriptional inhibition of polo-like kinase-1 

  575. Biomed. Pharmacother. Biomed. Pharmacother. Erdogan 88 210 2017 10.1016/j.biopha.2017.01.056 The natural flavonoid apigenin sensitizes human CD44(+) prostate cancer stem cells to cisplatin therapy 

  576. Primary Care Linares 42 4 645 2015 10.1016/j.pop.2015.07.006 Skin cancer 

  577. Monisha 479 2017 Chemoresistance and Chemosensitization in Melanoma, Cancer Cell Chemoresistance and Chemosensitization 

  578. AAPS J. Paredes-Gonzalez 16 4 727 2014 10.1208/s12248-014-9613-8 Apigenin reactivates Nrf2 anti-oxidative stress signaling in mouse skin epidermal JB6 P + cells through epigenetics modifications 

  579. Neoplasia (New York, N.Y.) Mirzoeva 20 9 930 2018 10.1016/j.neo.2018.07.005 Apigenin inhibits UVB-induced skin carcinogenesis: the role of thrombospondin-1 as an anti-inflammatory factor 

  580. Cancer Res. Wei 50 3 499 1990 Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice 

  581. Prostaglandins Leukot. Essent. Fat. Acids Kiraly 104 44 2016 10.1016/j.plefa.2015.11.006 Apigenin inhibits COX-2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing mice 

  582. Int. J. Cancer Caltagirone 87 4 595 2000 10.1002/1097-0215(20000815)87:4<595::AID-IJC21>3.0.CO;2-5 Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential 

  583. Nutrients Ghițu 11 4 858 2019 10.3390/nu11040858 A comprehensive assessment of apigenin as an antiproliferative, proapoptotic, antiangiogenic and immunomodulatory phytocompound 

  584. Phytomed. Int. J. Phytother. Phytopharmacol. Ye 18 1 32 2010 Flavonoids, apigenin and icariin exert potent melanogenic activities in murine B16 melanoma cells 

  585. Exp. Dermatol. Ye 20 9 755 2011 10.1111/j.1600-0625.2011.01297.x Activation of p38 MAPK pathway contributes to the melanogenic property of apigenin in B16 cells 

  586. J. Experim. Clin. Cancer Res. CR Xu 37 1 261 2018 10.1186/s13046-018-0929-6 Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects 

  587. J. Inorg. Biochem. Spoerlein 127 107 2013 10.1016/j.jinorgbio.2013.07.038 Effects of chrysin, apigenin, genistein and their homoleptic copper(II) complexes on the growth and metastatic potential of cancer cells 

  588. Oncol. Lett. Subhasitanont 14 4 4361 2017 10.3892/ol.2017.6705 Apigenin inhibits growth and induces apoptosis in human cholangiocarcinoma cells 

  589. Cell Prolif. Hussain 43 2 170 2010 10.1111/j.1365-2184.2009.00662.x Apigenin induces apoptosis via downregulation of S-phase kinase-associated protein 2-mediated induction of p27Kip1 in primary effusion lymphoma cells 

  590. J. Experim. Clin. Cancer Res. CR. Granato 36 1 167 2017 10.1186/s13046-017-0632-z Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell death 

  591. J. Cancer Huang 11 8 2123 2020 10.7150/jca.34981 Apigenin and abivertinib, a novel BTK inhibitor synergize to inhibit diffuse large B-cell lymphoma in vivo and vitro 

  592. Sailo 615 2017 Cancer Cell Chemoresistance and Chemosensitization Therapeutic strategies for chemosensitization of renal cancer 

  593. Int. J. Cancer Gates 121 10 2225 2007 10.1002/ijc.22790 A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer 

  594. Am. J. Clin. Nutr. Wang 89 3 905 2009 10.3945/ajcn.2008.26913 Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women 

  595. World J. Gastroenterol. Hoensch 14 14 2187 2008 10.3748/wjg.14.2187 Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence 

  596. Mol. Cancer Ther. Sung 8 4 959 2009 10.1158/1535-7163.MCT-08-0905 Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model 

  597. Biochim. Biophys. Acta Li 1805 2 167 2010 Targeting transcription factor NF-kappaB to overcome chemoresistance and radioresistance in cancer therapy 

  598. Front. Pharmacol. Ong 7 395 2016 10.3389/fphar.2016.00395 Judicious toggling of mTOR activity to combat insulin resistance and cancer: current evidence and perspectives 

  599. J. Biol. Regul. Homeost. Agents Angelini 24 2 197 2010 Modulation of multidrug resistance p-glycoprotein activity by flavonoids and honokiol in human doxorubicin- resistant sarcoma cells (MES-SA/DX-5): implications for natural sedatives as chemosensitizing agents in cancer therapy 

  600. J. Med. Chem. Chan 49 23 6742 2006 10.1021/jm060593+ Flavonoid dimers as bivalent modulators for P-glycoprotein-based multidrug resistance: synthetic apigenin homodimers linked with defined-length poly(ethylene glycol) spacers increase drug retention and enhance chemosensitivity in resistant cancer cells 

  601. J. Radiat. Res. Watanabe 48 1 45 2007 10.1269/jrr.0635 The chemopreventive flavonoid apigenin confers radiosensitizing effect in human tumor cells grown as monolayers and spheroids 

  602. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. van Rijn 3 10 1775 1997 Flavonoids as enhancers of X-ray-induced cell damage in hepatoma cells 

  603. Ann. Neurol. Staff 81 6 772 2017 10.1002/ana.24951 Chemotherapy-induced peripheral neuropathy: a current review 

  604. J. Stem Cells Metri 8 2 115 2013 Ayurveda for chemo-radiotherapy induced side effects in cancer patients 

  605. Curr. Opin. Neurol. Cavaletti 28 5 500 2015 10.1097/WCO.0000000000000234 Chemotherapy-induced peripheral neurotoxicity 

  606. Crit. Rev. Clin. Lab. Sci. Cao 54 2 87 2017 10.1080/10408363.2016.1261270 Biomarkers for monitoring chemotherapy-induced cardiotoxicity 

  607. J. Exp. Med. Cildir 214 9 2491 2017 10.1084/jem.20170910 The transcriptional program, functional heterogeneity, and clinical targeting of mast cells 

  608. Cardiol. Clin. Shoukat 37 4 449 2019 10.1016/j.ccl.2019.07.010 Cardiotoxicity related to radiation therapy 

  609. Brain Nerve Shinkei Kenkyu No Shinpo Suzuki 67 1 63 2015 Neurotoxicity of radiation 

  610. Immunity Cildir 51 5 949 2019 10.1016/j.immuni.2019.09.021 Genome-wide analyses of chromatin state in human mast cells reveal molecular drivers and mediators of allergic and inflammatory diseases 

  611. Cancer Chemother. Sakurai 46 12 1849 2019 [Utility of the predictive score for cisplatin-induced nephrotoxicity in patients with chemotherapy for lung cancer], Gan to kagaku ryoho 

  612. Science (New York, N.Y.) Tan 359 6380 1170 2018 10.1126/science.aan0346 Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells 

  613. Phytother. Res. PTR Psotová 18 7 516 2004 10.1002/ptr.1462 Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. Part III. Apigenin, baicalelin, kaempherol, luteolin and quercetin 

  614. Phytomed. Int. J. Phytother. Phytopharmacol. Fischer 47 192 2018 Prevention from radiation damage by natural products 

  615. Life Sci. Zare 232 2019 10.1016/j.lfs.2019.116623 Apigenin attenuates doxorubicin induced cardiotoxicity via reducing oxidative stress and apoptosis in male rats 

  616. Pharm. Biol. Hassan 55 1 766 2017 10.1080/13880209.2016.1275704 Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice 

  617. Eur. J. Drug Metab. Pharmacokinet. Rašković 42 5 849 2017 10.1007/s13318-017-0407-0 Antioxidative and protective actions of apigenin in a paracetamol-induced hepatotoxicity rat model 

  618. Mutat. Res. Genet. Toxicol. Environ. Mutagen. Ali 767 13 2014 10.1016/j.mrgentox.2014.04.006 Protective effect of apigenin against N-nitrosodiethylamine (NDEA)-induced hepatotoxicity in albino rats 

  619. J. Biochem. Mol. Toxicol. Mohamed 34 5 2020 10.1002/jbt.22472 Apigenin alleviated acetaminophen-induced hepatotoxicity in low protein-fed rats: targeting oxidative stress, STAT3, and apoptosis signals 

  620. Food Chem. Hu 204 274 2016 10.1016/j.foodchem.2016.02.138 Identification of flavonoids from Flammulina velutipes and its neuroprotective effect on pheochromocytoma-12 cells 

  621. Mutat. Res. Rithidech 585 1-2 96 2005 10.1016/j.mrgentox.2005.04.003 Protective effect of apigenin on radiation-induced chromosomal damage in human lymphocytes 

  622. Mutat. Res. Begum 747 1 71 2012 10.1016/j.mrgentox.2012.04.001 Apigenin ameliorates gamma radiation-induced cytogenetic alterations in cultured human blood lymphocytes 

  623. Int. J. Mol. Med. Choi 38 2 627 2016 10.3892/ijmm.2016.2626 Apigenin inhibits UVA-induced cytotoxicity in vitro and prevents signs of skin aging in vivo 

  624. Mutat. Res. Rithidech 749 1-2 29 2012 10.1016/j.mrgentox.2012.08.001 Attenuation of oxidative damage and inflammatory responses by apigenin given to mice after irradiation 

  625. Int. J. Pharm. Karim 532 2 757 2017 10.1016/j.ijpharm.2017.04.064 Development and evaluation of injectable nanosized drug delivery systems for apigenin 

  626. Food Chem Toxicol Das 670 2013 10.1016/j.fct.2013.09.037 Efficacy of PLGA-loaded apigenin nanoparticles in Benzo[a]pyrene and ultraviolet[HYPHEN]B induced skin cancer of mice: mitochondria mediated apoptotic signalling cascades 

  627. Artif. Cells Nanomed. Biotechnol. Jangdey 45 7 1452 2017 10.1080/21691401.2016.1247850 Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: in vitro evaluation 

  628. Drug Deliv. Jangdey 24 1 1026 2017 10.1080/10717544.2017.1344333 Fabrication, in-vitro characterization, and enhanced in-vivo evaluation of carbopol-based nanoemulsion gel of apigenin for UV-induced skin carcinoma 

  629. Artif. Cell Nanomed. Biotechnol. Jangdey 47 1 904 2019 10.1080/21691401.2019.1578784 Efficacy of Concanavalin-A conjugated nanotransfersomal gel of apigenin for enhanced targeted delivery of UV induced skin malignant melanoma 

  630. Food Chem. Toxicol. Int. J. Brit. Ind. Biol. Res. Assoc. Das 62 670 2013 10.1016/j.fct.2013.09.037 Efficacy of PLGA-loaded apigenin nanoparticles in Benzo[a]pyrene and ultraviolet-B induced skin cancer of mice: mitochondria mediated apoptotic signalling cascades 

  631. Toxicol. Lett. Das 223 2 124 2013 10.1016/j.toxlet.2013.09.012 Strategic formulation of apigenin-loaded PLGA nanoparticles for intracellular trafficking, DNA targeting and improved therapeutic effects in skin melanoma in vitro 

  632. Colloids Surf. B: Biointerfaces Sen 180 9 2019 10.1016/j.colsurfb.2019.04.035 Dual drug loaded liposome bearing apigenin and 5-fluorouracil for synergistic therapeutic efficacy in colorectal cancer 

  633. Nanomed. Nanotechnol. Biol. Med. Bhattacharya 14 6 1905 2018 10.1016/j.nano.2018.05.011 Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats 

  634. Anti Cancer Agents Med. Chem. Pal 17 12 1721 2017 Synergistic effect of graphene oxide coated nanotised apigenin with paclitaxel (GO-NA/PTX): a ROS dependent mitochondrial mediated apoptosis in ovarian cancer 

  635. Biochem. Biophys. Res. Commun. Gupta 287 4 914 2001 10.1006/bbrc.2001.5672 Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells 

  636. Baek 2016 Method for Improving Anti-cancer Effect of Apigenin by Irradiation and Pharmaceutical Composition for Treating or Preventing Cancer Comprising Irradiated Apigenin 

  637. Xiaoli 2016 Granules for Assisting in Radiation Resistance in Tumor Interventional Therapy 

  638. Cheol-woo 2017 Pharmaceutical Compositions for Preventing or Treating Lung Cancer Comprising Apigenin, Curcumin, and Honokiol as Active Ingredients 

  639. Cheng 2017 Applications of Apigenin for Preparation of Medicines Inhibiting Liver Cancer Epithelial-mesenchymal Transition 

  640. Lihua 2018 Applications of Apigenin in Preparation of Gastric Cancer Treatment Drugs 

  641. Lihua 2018 Application of Apigenin in Preparation of Drugs Used for Treating Rectal Cancer 

  642. Lihua 2018 Application of Apigenin in Preparation of Drugs Used for Treating Pancreas Cancer 

  643. Lihua 2018 Application of Apigenin to Prepare Medicine for Treating Cervical Cancer 

  644. Lihua 2018 Application of Apigenin to Prepare Medicine for Treating Tongue Cancer 

  645. Lihua 2018 Application of Apigenin to Preparation of Drugs Capable of Resisting Lung Cancer Metastasis 

  646. Lihua 2018 Application of Apigenin to Prepare Medicine for Treating Ileocecal Cancer 

  647. Lihua 2018 Application of Apigenin in Preparation of Drugs Used for Treating Nasopharyngeal Carcinoma 

  648. Zuohuan 2018 Flavonoid Derivatives and a Preparation Method and Uses 

  649. Cheng 2018 Flavonoids and Their Application in Anticancer Drugs 

  650. Lihua 2018 Application of Apigenin in Preparation of Drugs Used for Treating Breast Cancer 

  651. Lihua 2018 Use of Apigenin in Preparation of Drugs for Treating Endometrial Cancer 

  652. Jian 2017 Application of Apigenin in Inhibition of Activation of Wnt/beta-catenin Signal Channel of Colon Cancer Cell 

  653. Lihua 2018 Use of Apigenin in Preparation of Drug for Treating Laryngeal Cancer 

  654. Lihua 2018 Application of Apigenin in Preparation of Cholangiocarcinoma Treatment Drugs 

  655. Cheol-woo 2018 Pharmaceutical Composition Comprising Apigenin, Curcumin, and Honokiol as Active Ingredients for Preventing or Treating Lung Cancer 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로