$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] An artificial neural network model to predict debris-flow volumes caused by extreme rainfall in the central region of South Korea

Engineering geology, v.281, 2021년, pp.105979 -   

Lee, Deuk-Hwan (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Cheon, Enok (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Lim, Hwan-Hui (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Choi, Shin-Kyu (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Kim, Yun-Tae (Department of Ocean Engineering, Pukyong National University) ,  Lee, Seung-Rae (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST))

Abstract AI-Helper 아이콘AI-Helper

Abstract In South Korea, the risk of debris-flow is relatively high due to the country's vast mountainous topographical features and intense continuous rainfall during the summer. Debris-flows can result in the loss of human life and severe property damage, which can be made worse due to the poor s...

Keyword

참고문헌 (43)

  1. Arattano 115 2015 Engineering Geology for Society and Territory - Volume 3 Comparison of methods and procedures for debris-flow volume estimation 

  2. Landslides Baum 7 259 2010 10.1007/s10346-009-0177-0 Early warning of rainfall-induced shallow landslides and debris flows in the USA 

  3. Geografiska Annal. Ser. A Phys. Geogr. Caine 62 23 1980 The rainfall intensity-duration control of shallow landslides and debris flows 

  4. Eng. Geol. Chang 123 83 2011 10.1016/j.enggeo.2011.07.004 Estimation of sediment volume of debris flow caused by extreme rainfall in Taiwan 

  5. Geomorphology Chung 94 438 2008 10.1016/j.geomorph.2006.12.036 Predicting landslides for risk analysis - Spatial models tested by a cross-validation technique 

  6. Can. Geotech. J. Corominas 33 260 1996 10.1139/t96-005 The angle of reach as a mobility index for small and large landslides 

  7. Costa 268 1984 Developments and Applications of Geomorphology Physical geomorphology of debris flows 

  8. Math. Control Signals Syst. Cybenko 2 4 303 1989 10.1007/BF02551274 Approximation by superpositions of a sigmoidal function 

  9. Phys. Chem. Earth D’Agostino 26 657 2001 Debris flow magnitude in the Eastern Italian Alps: data collection and analysis 

  10. Nat. Hazards Dowling 71 1 203 2014 10.1007/s11069-013-0907-4 Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011 

  11. Foresee 1930 1997 Proceeding of the International Joint Conference on Neural Network Gauss-Newton approximation to Bayesian learning 

  12. Geomorphology Gartner 96 339 2008 10.1016/j.geomorph.2007.02.033 Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S 

  13. Griswold 2008 Mobility Statistics and Automated Hazard Mapping for Debris Flows and Rock Avalanches (ver. 1.1, April 2014): U.S. Geological Survey Scientific Investigations Report 2007-5276 

  14. Landslides Guzzetti 5 3 2008 10.1007/s10346-007-0112-1 The rainfall intensity-duration control of shallow landslides and debris flows: an update 

  15. Geology Haas 47 791 2019 10.1130/G45950.1 Debris-flow volume quantile prediction from catchment morphometry 

  16. GSA Bull. Horton 56 3 275 1945 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2 Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology 

  17. Bull. Geol. Soc. Am. Hungr 116 1240 2004 10.1130/B25362.1 Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism 

  18. Can. Geotech. J. Hungr 21 663 1984 10.1139/t84-073 Quantitative analysis of debris torrent hazards for design of remedial measures 

  19. GSA Bull. Iverson 110 972 1998 10.1130/0016-7606(1998)110<0972:ODOLIH>2.3.CO;2 Objective delineation of lahar-inundation hazard zones 

  20. Jakob 1 2005 Debris-Flow Hazards and Related Phenomena Introduction 

  21. Earth Surf. Process. Landf. Jakob 30 755 2005 10.1002/esp.1188 The significance of channel recharge rates for estimating debris-flow magnitude and frequency 

  22. Eng. Geol. Kang 230 64 2017 10.1016/j.enggeo.2017.09.017 Development of an initiation criterion for debris flows based on local topographic properties and applicability assessment at a regional scale 

  23. Eng. Geol. Lee 71 289 2004 10.1016/S0013-7952(03)00142-X Determination and application of the weights for landslide susceptibility mapping using an artificial neural network 

  24. Remote Sens. Lee 12 7 1 2020 10.3390/rs12071194 Shallow landslide susceptibility models based on artificial neural networks considering the factor selection method and various non-linear activation functions 

  25. Neural Comput. MacKay 4 415 1992 10.1162/neco.1992.4.3.415 Bayesian interpolation 

  26. Surf. Process. Landforms Marchi 29 207 2004 10.1002/esp.1027 Estimation of debris-flow magnitude in the eastern Italian Alps Earth 

  27. Earth Surf. Process. Landf. Marchi 44 4 933 2019 10.1002/esp.4546 Debris-flow volumes in northeastern Italy: relationship with drainage area and size probability 

  28. National Institute of Environmental Research (NIER) 2010 Korean Climate Change Assessment Report 2010 

  29. Int. J. Remote Sens. Paola 16 3033 1995 10.1080/01431169508954607 A review and analysis of backpropagation neural networks for classification of remotely sensed multi-spectral imagery 

  30. Eng. Geol. Park 260 1 2019 10.1016/j.enggeo.2019.105193 A regional-scale landslide early warning methodology applying statistical and physically based approaches in sequence 

  31. Environ. Model. Softw. Pradhan 25 747 2010 10.1016/j.envsoft.2009.10.016 Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling 

  32. Nat. Hazards Rickenmann 19 47 1999 10.1023/A:1008064220727 Empirical relationships for Debris Flow 

  33. Geomorphology Rickenmann 8 175 1993 10.1016/0169-555X(93)90036-2 The 1987 debris flows in Switzerland: documentation and analysis 

  34. Landslides Segoni 2020 10.1007/s10346-019-01340-2 Landslide susceptibility assessment in complex geological settings: sensitivity to geological information and insights on its parameterization 

  35. IEEE Trans. Nucl. Sci. Sola 44 1464 1997 10.1109/23.589532 Importance of input data normalization for the application of neural networks to complex industrial problems 

  36. J. R. Stat. Soc. Ser. B Methodol. Stone 36 2 111 1974 10.1111/j.2517-6161.1974.tb00994.x Cross-validatory choice and assessment of statistical predictions 

  37. Disaster Sci. Takahashi 3 1 57 1981 Estimation of potential debris flows and their hazardous zones; soft countermeasures for a disaster. Journal of Nat 

  38. Takei 35 1984 Proc. Int. Symp. Interpraevent, Villach, Austria Interdependence of sediment budget between individual torrents and a river-system 

  39. Theil 213 1961 Economic Forecasts and Policy, Amsterdam, North-Holland 

  40. Landslides Tien Bui 13 361 2016 10.1007/s10346-015-0557-6 Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree 

  41. Eng. Geol. Vasu 215 36 2016 10.1016/j.enggeo.2016.10.006 A new approach to temporal modelling for landslide hazard assessment using an extreme rainfall induced-landslide index 

  42. Ann. Nucl. Energy Yoon 125 18 2019 10.1016/j.anucene.2018.10.045 Specific heat capacity model for compacted bentonite buffer materials 

  43. IEEE Trans. Geosci. Remote Sens. Zhou 37 771 1999 10.1109/36.752193 Verification of the nonparametric characteristics of backpropagation neural networks for image classification 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로