$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] MC2‐Net: motion correction network for multi‐contrast brain MRI

Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine, v.86 no.2, 2021년, pp.1077 - 1092  

Lee, Jongyeon (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea) ,  Kim, Byungjai (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea) ,  Park, HyunWook (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

PurposeA motion‐correction network for multi‐contrast brain MRI is proposed to correct in‐plane rigid motion artifacts in brain MR images using deep learning.MethodThe proposed method consists of 2 parts: image alignment and motion correction. Alignment of multi‐contrast MR i...

Keyword

참고문헌 (55)

  1. Andre JB , Bresnahan BW , Mossa‐Basha M , et al. Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations . J Am Coll Radiol . 2015 ; 12 : 689 ‐ 695 . 

  2. Zaitsev M , Maclaren J , Herbst M . Motion artifacts in MRI: a complex problem with many partial solutions . J Magn Reson Imaging . 2015 ; 42 : 887 ‐ 901 . 

  3. Runge VM , Wood ML . Fast imaging and other motion artifact reduction schemes: a pictorial overview . Magn Reson Imaging . 1988 ; 6 : 595 ‐ 608 . 

  4. Godenschweger F , Kägebein U , Stucht D , et al. Motion correction in MRI of the brain . Phys Med Biol . 2016 ; 61 : R32 . 

  5. Bernstein MA , King KF , Zhou XJ . Handbook of MRI Pulse Sequences . Burlington, MA : Elsevier Academic Press ; 2004 . 

  6. Ehman RL , Felmlee JP . Adaptive technique for high‐definition MR imaging of moving structures . Radiology . 1989 ; 173 : 255 ‐ 263 . 

  7. Hu X , Kim SG . Reduction of signal fluctuation in functional MRI using navigator echoes . Magn Reson Med . 1994 ; 31 : 495 ‐ 503 . 

  8. Firmin D , Keegan J . Navigator echoes in cardiac magnetic resonance . J Cardiovasc Magn Reson . 2001 ; 3 : 183 ‐ 193 . 

  9. Zaitsev M , Dold C , Sakas G , Hennig J , Speck O . Magnetic resonance imaging of freely moving objects: prospective real‐time motion correction using an external optical motion tracking system . Neuroimage . 2006 ; 31 : 1038 ‐ 1050 . 

  10. Herbst M , Maclaren J , Weigel M , Korvink J , Hennig J , Zaitsev M . Prospective motion correction with continuous gradient updates in diffusion weighted imaging . Magn Reson Med . 2012 ; 67 : 326 ‐ 338 . 

  11. Pipe JG . Motion correction with PROPELLER MRI: application to head motion and free‐breathing cardiac imaging . Magn Reson Med . 1999 ; 42 : 963 ‐ 969 . 

  12. Vaillant G , Prieto C , Kolbitsch C , Penney G , Schaeffter T . Retrospective rigid motion correction in k‐space for segmented radial MRI . IEEE Trans Med Imaging . 2013 ; 33 : 1 ‐ 10 . 

  13. Atkinson D , Hill DL , Stoyle PN , Summers PE , Keevil SF . Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion . IEEE Trans Med Imaging . 1997 ; 16 : 903 ‐ 910 . 

  14. Cordero‐Grande L , Teixeira RPAG , Hughes EJ , Hutter J , Price AN , Hajnal JV . Sensitivity encoding for aligned multishot magnetic resonance reconstruction . IEEE Trans Comput Imaging . 2016 ; 2 : 266 ‐ 280 . 

  15. Akkus Z , Galimzianova A , Hoogi A , Rubin DL , Erickson BJ . Deep learning for brain MRI segmentation: state of the art and future directions . J Digit Imaging . 2017 ; 30 : 449 ‐ 459 . 

  16. Ronneberger O , Fischer P , Brox T . U‐net: convolutional networks for biomedical image segmentation . In International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI 2015), Munich, Germany , 2015 . p. 234 ‐ 241 . 

  17. Schlemper J , Caballero J , Hajnal JV , Price AN , Rueckert D . A deep cascade of convolutional neural networks for dynamic MR image reconstruction . IEEE Trans Med Imaging . 2017 ; 37 : 491 ‐ 503 . 

  18. Kwon K , Kim D , Park H . A parallel MR imaging method using multilayer perceptron . Med Phys . 2017 ; 44 : 6209 ‐ 6224 . 

  19. Kyathanahally SP , Döring A , Kreis R . Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy . Magn Reson Med . 2018 ; 80 : 851 ‐ 863 . 

  20. Hammernik K , Klatzer T , Kobler E , et al. Learning a variational network for reconstruction of accelerated MRI data . Magn Reson Med . 2018 ; 79 : 3055 ‐ 3071 . 

  21. Jin KH , Um JY , Lee D , Lee J , Park SH , Ye JC . MRI artifact correction using sparse + low‐rank decomposition of annihilating filter‐based Hankel matrix . Magn Reson Med . 2017 ; 78 : 327 ‐ 340 . 

  22. Krizhevsky A , Sutskever I , Hinton GE . ImageNet classification with deep convolutional neural networks . Adv Neural Inf Process Syst . 2012 ; 1097 ‐ 1105 . 

  23. Goodfellow I , Pouget‐Abadie J , Mirza M , et al. Generative adversarial nets . Adv Neural Inf Process Syst . 2014 ; 2672 ‐ 2680 . 

  24. Litjens G , Kooi T , Bejnordi BE , et al. A survey on deep learning in medical image analysis . Med Image Anal . 2017 ; 42 : 60 ‐ 88 . 

  25. Johnson PM , Drangova M . Motion correction in MRI using deep learning . In Proceedings of the 26th Annual Meeting of ISMRM, Paris, France , 2018 . p. 4098. 

  26. Pawar K , Chen Z , Shah NJ , Egan GF . Motion correction in MRI using deep convolutional neural network . In Proceedings of the 26th Annual Meeting of ISMRM, Paris, France , 2018 . p. 1174. 

  27. Isola P , Zhu JY , Zhou T , Efros AA . Image‐to‐image translation with conditional adversarial networks . In?Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI , 2017 . p. 1125 ‐ 1134 . 

  28. Bian Y , Wang Y , Reeves S . Motion correction of magnitude MR images using generative adversarial networks . In Proceedings of the 27th Annual Meeting of ISMRM, Montréal, Québec, Canada , 2019 . p. 4857 . 

  29. Johnson PM , Drangova M . Conditional generative adversarial network for 3D rigid‐body motion correction in MRI . Magn Reson Med . 2019 ; 82 : 901 ‐ 910 . 

  30. Armanious K , Jiang C , Fischer M , Küstner T , Hepp T , Nikolaou K . MedGAN: medical image translation using GANs . Comput Med Imaging Graph . 2020 ; 79 : 101684 . 

  31. Küstner T , Armanious K , Yang J , Yang B , Schick F , Gatidis S . Retrospective correction of motion‐affected MR images using deep learning frameworks . Magn Reson Med . 2019 ; 82 : 1527 ‐ 1540 . 

  32. Haskell MW , Cauley SF , Bilgic B , et al. Network accelerated motion estimation and reduction (NAMER): convolutional neural network guided retrospective motion correction using a separable motion model . Magn Reson Med . 2019 ; 82 : 1452 ‐ 1461 . 

  33. Huang J , Chen C , Axel L . Fast multi‐contrast MRI reconstruction . Magn Reson Imaging . 2014 ; 32 : 1344 ‐ 1352 . 

  34. Bilgic B , Goyal VK , Adalsteinsson E . Multi‐contrast reconstruction with Bayesian compressed sensing . Magn Reson Med . 2011 ; 66 : 1601 ‐ 1615 . 

  35. Menze BH , Jakab A , Bauer S , et al. The multimodal brain tumor image segmentation benchmark (BRATS) . IEEE Trans Med Imaging . 2014 ; 34 : 1993 ‐ 2024 . 

  36. Balkrishnan G , Zhao A , Sabuncu MR , Guttag J , Dalca AV . Voxelmorph: a learning framework for deformable medical image registration . IEEE Trans Med Imaging . 2019 ; 38 : 1788 ‐ 1800 . 

  37. de Vos BD , Berendsen FF , Viergever MA , Sokooti H , Staring M , Išgum I . A deep learning framework for unsupervised affine and deformable image registration . Med Image Anal . 2019 ; 52 : 128 ‐ 143 . 

  38. Lu H , Nagae‐Poetscher LM , Golay X , Lin D , Pomper M , Van Zijl PC . Routine clinical brain MRI sequences for use at 3.0 Tesla . J Magn Reson Imaging . 2005 ; 22 : 13 ‐ 22 . 

  39. Jaderberg M , Simonyan K , Zisserman A . Spatial transformer networks . Adv Neural Inf Process Syst . 2015 ; 2017 ‐ 2025 . 

  40. Adler DH , Ittyerah R , Pluta J , Pickup S , Liu W , Wolk DA . Probabilistic atlas of the human hippocampus combining ex vivo MRI and histology . In International Conference on Medical Image Computing and Computer‐Assisted Intervention (MICCAI 2016), Athens, Greece , 2016 . p. 63 ‐ 71 . 

  41. Wells WM III , Viola P , Atsumi H , Nakajima S , Kikinis R . Multi‐modal volume registration by maximization of mutual information . Med Image Anal . 1996 ; 1 : 35 ‐ 51 . 

  42. He K , Zhang X , Ren S , Sun J . Deep residual learning for image recognition . In?Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV , 2016 . p. 770 ‐ 778 . 

  43. Zhu JY , Park T , Isola P , Efros AA . Unpaired image‐to‐image translation using cycle‐consistent adversarial networks . In?Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Honolulu, HI , 2017 . p. 2223 ‐ 2232 . 

  44. Wang Z , Bovik AC , Sheikh HR , Simoncelli EP . Image quality assessment: from error visibility to structural similarity . IEEE Trans Image Process . 2004 ; 13 : 600 ‐ 612 . 

  45. Simonyan K , Zisserman A . Very deep convolutional networks for large‐scale image recognition . In International Conference on Learning Representations. 2015 . arXiv:1409.1556v6 [cs.CV] 

  46. Johnson J , Alahi A , Fei‐Fei L . Perceptual losses for real‐time style transfer and super‐resolution . In?European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands , 2016 . p. 694 ‐ 711 . 

  47. Kingma DP , Ba J . Adam: a method for stochastic optimization . In Proceedings the 3rd International Conference for Learning Representations, San Diego , 2015 . arXiv:1412.6980 [cs.LG]. 

  48. Abadi M , Barham P , Chen J , et al. Tensorflow: a system for large‐scale machine learning . In?12th USENIX Symposium on Operating Systems Design and Implementation, Savannah, GA , 2016 . p. 265 ‐ 283 . 

  49. Walsh DO , Gmitro AF , Marcellin MW . Adaptive reconstruction of phased array MR imagery . Magn Reson Med . 2000 ; 43 : 682 ‐ 690 . 

  50. Al Shalabi L , Shaaban Z . Normalization as a preprocessing engine for data mining and the approach of preference matrix . In Proceedings of the International Conference on Dependability of Computer Systems (DepCoS‐RELCOMEX), Szklarska Poreba, Poland , 2006 . p. 207 ‐ 214 . 

  51. Chartsias A , Joyce T , Giuffrida MV , Tsaftaris SA . Multimodal MR synthesis via modality‐invariant latent representation . IEEE Trans Med Imaging . 2018 ; 37 : 803 ‐ 814 . 

  52. Sharma A , Hamarneh G . Missing MRI pulse sequence synthesis using multi‐modal generative adversarial network . IEEE Trans Med Imaging . 2020 ; 39 : 1170 ‐ 1183 . 

  53. Russakoff DB , Tomasi C , Rohlfing T , Maurer CR . Image similarity using mutual information of regions . In Proceedings of the European Conference on Computer Vision (ECCV), Prague, Czech Republic , 2004 . p. 596 ‐ 607 . 

  54. Hu Y , Tang J , Jiang H , Peng S . A fast algorithm to estimate mutual information for image registration . In: The 9th International Conference for Young Computer Scientists (ICYCS), Hunan, China , 2008 . p. 720 ‐ 724 . 

  55. Lee J , Kim B , Jeong N , Park H . Motion correction for a multi‐contrast brain MRI using a multi‐input neural network . In Proceedings of the 28th Annual Meeting of ISMRM, Virtual Conference & Exhibition, 2020 . p. 3354 . 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로