$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Adaptive hierarchical sliding mode control for full nonlinear dynamics of uncertain ridable ballbots under input saturation 원문보기

International journal of robust and nonlinear control, v.31 no.8, 2021년, pp.2882 - 2904  

Do, Van‐Thach (Department of Mechanical Engineering, Kyung Hee University, Yongin‐) ,  Lee, Soon‐Geul (si, Republic of Korea) ,  Van, Mien (Department of Mechanical Engineering, Kyung Hee University, Yongin‐)

Abstract AI-Helper 아이콘AI-Helper

AbstractThis research proposes a nonlinear adaptive controller based on a hierarchical sliding mode control (HSMC) framework to stabilize the operation of a ridable ballbot based on the full nonlinear dynamics (FND). The FND of ballbots is a multiple‐input‐multiple‐output underactu...

주제어

참고문헌 (49)

  1. Nagarajan U , Kantor G , Hollis R . The ballbot: an omnidirectional balancing mobile robot . Int J Robot Res . 2014 ; 33 ( 6 ): 917 ‐ 930 . https://doi.org/10.1177/0278364913509126. 

  2. Fankhauser P , Gwerder C . Modeling and control of a ballbot [Bachelor thesis]. Eidgenössische Technische Hochschule Zürich; 2010 . https://doi.org/10.3929/ethz‐a‐010056685. 

  3. van der Blonk K . Modeling and Control of a Ball‐Balancing Robot [Master's thesis]. University of Twente; 2014 . https://doi.org/10.13140/RG.2.2.31490.73928. 

  4. Do V , Lee S , Gwak K . Passivity‐based nonlinear control for a ballbot to balance and transfer . Int J Control Autom Syst . 2019 ; 17 ( 11 ): 2929 ‐ 2939 . https://doi.org/10.1007/s12555‐019‐0073‐x. 

  5. Pham DB , Kim H , Kim J , Lee SG . Balancing and transferring control of a ball Segway using a double‐loop approach [applications of control] . IEEE Control Syst . 2018 ; 38 ( 2 ): 15 ‐ 37 . https://doi.org/10.1109/MCS.2017.2786444. 

  6. Sukvichai K , Parnichkun M . Double‐level ball‐riding robot balancing: from system design, modeling, controller synthesis, to performance evaluation . Mechatronics . 2014 ; 24 ( 5 ): 519 ‐ 532 . https://doi.org/10.1016/j.mechatronics.2014.06.003. 

  7. Tsai CC , Juang MH , Chan CK , Liao CW , Chan SJ . Self‐balancing and position control using multiloop approach for ball robots. Paper presented at: Proceedings of the 2010 International Conference on System Science and Engineering (ICSSE 2010); 2010:251‐256 , https://doi.org/10.1109/ICSSE.2010.5551789. 

  8. Yavuz F , Unel M . Robust balancing and position control of a single spherical wheeled mobile platform. Paper presented at: Proceedings of the 42nd Annual Conference of the IEEE Industrial Electronics Society (IECON 2016); 2016:613‐618 , https://doi.org/10.1109/IECON.2016.7793114. 

  9. Garcia‐Garcia RA , Arias‐Montiel M . Linear controllers for the NXT ballbot with parameter variations using linear matrix inequalities [lecture notes] . IEEE Control Syst . 2016 ; 36 ( 3 ): 121 ‐ 136 . https://doi.org/10.1109/MCS.2016.2535915. 

  10. Pham DB , Weon I‐S , Lee S‐G . Partial feedback linearization double‐loop control for a pseudo‐2D ridable ballbot . Int J Control Autom Syst . 2020 ; 18 ( 5 ): 1310 ‐ 1323 . https://doi.org/10.1007/s12555‐018‐0854‐7. 

  11. Chiu C‐H , Tsai W‐R . Design and implementation of an omnidirectional spherical mobile platform . IEEE Trans Ind Electron . 2015 ; 62 ( 3 ): 1619 ‐ 1628 . https://doi.org/10.1109/TIE.2014.2360078. 

  12. Chan C , Tsai C . Direct adaptive recurrent interval type 2 fuzzy neural networks control using for a ball robot with a four‐motor inverse‐mouse ball drive, Paper presented at: Proceedings of the 2013 International Conference on Advanced Robotics and Intelligent Systems; 2013:5‐10 , https://doi.org/10.1109/ARIS.2013.6573525. 

  13. Edwards C , Spurgeon S . Sliding Mode Control: Theory and Applications . London, UK : Taylor & Francis ; 1998 . 

  14. Bartolini G , Pisano A , Punta E , Usai E . A survey of applications of second‐order sliding mode control to mechanical systems . Int J Control . 2003 ; 76 ( 9–10 ): 875 ‐ 892 . https://doi.org/10.1080/0020717031000099010. 

  15. Zou Y . Nonlinear robust adaptive hierarchical sliding mode control approach for quadrotors . Int J Robust Nonlinear Control . 2017 ; 27 ( 6 ): 925 ‐ 941 . https://doi.org/10.1002/rnc.3607. 

  16. Zhao B , Xian B , Zhang Y , Zhang X . Nonlinear robust sliding mode control of a quadrotor unmanned aerial vehicle based on immersion and invariance method . Int J Robust Nonlinear Control . 2015 ; 25 ( 18 ): 3714 ‐ 3731 . https://doi.org/10.1002/rnc.3290. 

  17. Van M . Adaptive neural integral sliding‐mode control for tracking control of fully actuated uncertain surface vessels . Int J Robust Nonlinear Control . 2019 ; 29 ( 5 ): 1537 ‐ 1557 . https://doi.org/10.1002/rnc.4455. 

  18. Wang W , Yi J , Zhao D , Liu D . Design of a stable sliding‐mode controller for a class of second‐order underactuated systems . IEE Proc ‐ Control Theory Appl . 2004 ; 151 ( 6 ): 683 ‐ 690 . https://doi.org/10.1049/ip‐cta:20040902. 

  19. Almutairi NB , Zribi M . Sliding mode control of a three‐dimensional overhead crane . J Vib Control . 2009 ; 15 ( 11 ): 1679 ‐ 1730 . https://doi.org/10.1177/1077546309105095. 

  20. Kim G‐H , Hong K‐S . Adaptive sliding‐mode control of an offshore container crane with unknown disturbances . IEEE/ASME Trans Mechatron . 2019 ; 24 ( 6 ): 2850 ‐ 2861 . https://doi.org/10.1109/TMECH.2019.2946083. 

  21. Tuan LA . Neural observer and adaptive fractional‐order Backstepping fast‐terminal sliding‐mode control of RTG cranes . IEEE Trans Ind Electron . 2021 ; 68 ( 1 ): 434 ‐ 442 . https://doi.org/10.1109/TIE.2019.2962450. 

  22. Tuan LA , Lee S‐G , Ko DH , Nho LC . Combined control with sliding mode and partial feedback linearization for 3D overhead cranes . Int J Robust Nonlinear Control . 2014 ; 24 ( 18 ): 3372 ‐ 3386 . https://doi.org/10.1002/rnc.3061. 

  23. Olfati‐Saber R . Normal forms for underactuated mechanical systems with symmetry . IEEE Trans Automat Control . 2002 ; 47 ( 2 ): 305 ‐ 308 . https://doi.org/10.1109/9.983365. 

  24. Lu B , Fang Y , Sun N . Continuous sliding mode control strategy for a class of nonlinear underactuated systems . IEEE Trans Automat Control . 2018 ; 63 ( 10 ): 3471 ‐ 3478 . https://doi.org/10.1109/TAC.2018.2794885. 

  25. Rsetam K , Cao Z , Man Z . Cascaded‐extended‐state‐observer‐based sliding‐mode control for underactuated flexible joint robot . IEEE Trans Ind Electron . 2020 ; 67 ( 12 ): 10822 ‐ 10832 . https://doi.org/10.1109/TIE.2019.2958283. 

  26. Huang J , Ri S , Fukuda T , Wang Y . A disturbance observer based sliding mode control for a class of underactuated robotic system with mismatched uncertainties . IEEE Trans Automat Control . 2019 ; 64 ( 6 ): 2480 ‐ 2487 . https://doi.org/10.1109/TAC.2018.2868026. 

  27. Chen L , Van M . Sliding mode control of a class of underactuated system with non‐integrable momentum . J Frankl Inst . 2020 ; 357 ( 14 ): 9484 ‐ 9504 . https://doi.org/10.1016/j.jfranklin.2020.07.022. 

  28. Aloui S , Pages O , El Hajjaji A , Chaari A , Koubaa Y . Robust adaptive fuzzy sliding mode control design for a class of MIMO underactuated system . IFAC Proc . 2011 ; 44 ( 1 ): 11127 ‐ 11132 . https://doi.org/10.3182/20110828‐6‐IT‐1002.03435. 

  29. Jespersen TK . Kugle ‐ Modelling and Control of a Ball‐Balancing Robot [Master thesis]; 2019 . 

  30. Pham DB , Kim J , Lee S‐G . Combined control with sliding mode and partial feedback linearization for a spatial ridable ballbot . Mech Syst Signal Process . 2019 ; 128 : 531 ‐ 550 . https://doi.org/10.1016/j.ymssp.2019.04.008. 

  31. Yi J , Wang W , Zhao D , Liu X . Cascade sliding‐mode controller for large‐scale underactuated systems. Paper presented at: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2005:301‐306 . https://doi.org/10.1109/IROS.2005.1545463. 

  32. Qian D , Yi J , Zhao D . Hierarchical sliding mode control for a class of SIMO under‐actuated systems . Control Cybern . 2008 ; 37 ( 1 ): 159 ‐ 175 . 

  33. Hwang C‐L , Fang W‐L . Global fuzzy adaptive hierarchical path tracking control of a mobile robot with experimental validation . IEEE Trans Fuzzy Syst . 2016 ; 24 ( 3 ): 724 ‐ 740 . https://doi.org/10.1109/TFUZZ.2015.2476519. 

  34. Sun L , Huo W . Adaptive fuzzy control of spacecraft proximity operations using hierarchical fuzzy systems . IEEE/ASME Trans Mechatron . 2016 ; 21 ( 3 ): 1629 ‐ 1640 . https://doi.org/10.1109/TMECH.2015.2494607. 

  35. Hwang CL , Chiang CC , Yeh YW . Adaptive fuzzy hierarchical sliding‐mode control for the trajectory tracking of uncertain underactuated nonlinear dynamic systems . IEEE Trans Fuzzy Syst . 2014 ; 22 ( 2 ): 286 ‐ 299 . https://doi.org/10.1109/TFUZZ.2013.2253106. 

  36. Do V‐T , Lee S‐G . Neural integral backstepping hierarchical sliding mode control for a ridable ballbot under uncertainties and input saturation . IEEE Trans Syst Man Cybern Syst . 2020 ; 1 ‐ 14 . https://doi.org/10.1109/TSMC.2020.2967433. 

  37. Zhao X , Yang H , Zong G . Adaptive neural hierarchical sliding mode control of nonstrict‐feedback nonlinear systems and an application to electronic circuits . IEEE Trans Syst Man Cybern Syst . 2017 ; 47 ( 7 ): 1394 ‐ 1404 . https://doi.org/10.1109/TSMC.2016.2613885. 

  38. Liu C , Zou Z , Li T . Path following of underactuated surface vessels with fin roll reduction based on neural network and hierarchical sliding mode technique . Neural Comput & Applic . 2015 ; 26 ( 7 ): 1525 ‐ 1535 . https://doi.org/10.1007/s00521‐015‐1821‐3. 

  39. Pham DB , Lee SG . Hierarchical sliding mode control for a two‐dimensional ball segway that is a class of a second‐order underactuated system . J Vib Control . 2019 ; 25 ( 1 ): 72 ‐ 83 . https://doi.org/10.1177/1077546318770089. 

  40. Pham DB , Kim J , Lee S‐G , Gwak K‐W . Double‐loop control with hierarchical sliding mode and proportional integral loop for 2D ridable ballbot . Int J Precis Eng Manuf . 2019 ; 20 ( 9 ): 1519 ‐ 1532 . https://doi.org/10.1007/s12541‐019‐00139‐4. 

  41. Pham DB , Lee S‐G . Aggregated hierarchical sliding mode control for a spatial ridable ballbot . Int J Precis Eng Manuf . 2018 ; 19 ( 9 ): 1291 ‐ 1302 . https://doi.org/10.1007/s12541‐018‐0153‐5. 

  42. Do V‐T , Lee S‐G , Kim J‐H . Robust integral backstepping hierarchical sliding mode controller for a ballbot system . Mech Syst Signal Process . 2020 ; 144 : 106866 . https://doi.org/10.1016/j.ymssp.2020.106866. 

  43. Pellegrini E , Diepold KJ , Dessort R , Panzer H . 3D‐modeling of a robot balancing on a ball . Tech Rep Autom Control . 2011 ; TRAC‐6 ( 2011 ): 1 ‐ 28 . 

  44. Thach DV , Lee S . LQG control design for a coupled ballbot dynamical system. Paper presented at: Proceedings of the 2018 18th International Conference on Control, Automation and Systems (ICCAS); 2018:666‐670 . 

  45. Olfati‐Saber R . Global configuration stabilization for the VTOL aircraft with strong input coupling . IEEE Trans Automat Control . 2002 ; 47 ( 11 ): 1949 ‐ 1951 . https://doi.org/10.1109/TAC.2002.804457. 

  46. Tuan LA , Kim JJ , Lee SG , Lim TG , Nho LC . Second‐order sliding mode control of a 3D overhead crane with uncertain system parameters . Int J Precis Eng Manuf . 2014 ; 15 ( 5 ): 811 ‐ 819 . https://doi.org/10.1007/s12541‐014‐0404‐z. 

  47. Zhihong M , Palaniswami M . Robust tracking control for rigid robotic manipulators . IEEE Trans Automat Control . 1994 ; 39 ( 1 ): 154 ‐ 159 . https://doi.org/10.1109/9.273355. 

  48. Sun L , Zheng Z . Disturbance‐observer‐based robust Backstepping attitude stabilization of spacecraft under input saturation and measurement uncertainty . IEEE Trans Ind Electron . 2017 ; 64 ( 10 ): 7994 ‐ 8002 . https://doi.org/10.1109/TIE.2017.2694349. 

  49. Tao G . A simple alternative to the Barbalat lemma . IEEE Trans Automat Control . 1997 ; 42 ( 5 ): 698 . https://doi.org/10.1109/9.580878. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로