$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Autophagy and Autophagy-Related Diseases: A Review 원문보기

International journal of molecular sciences, v.21 no.23, 2020년, pp.8974 -   

Ichimiya, Tadashi (Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan) ,  Yamakawa, Tsukasa (aizenblue138@gmail.com (T.I.)) ,  Hirano, Takehiro (awakamay.dem1@gmail.com (T.Y.)) ,  Yokoyama, Yoshihiro (a08m081@gmail.com (T.H.)) ,  Hayashi, Yuki (yoshi_yokoyamaa@yahoo.co.jp (Y.Y.)) ,  Hirayama, Daisuke (polestar100100@gmail.com (Y.H.)) ,  Wagatsuma, Kohei (hirarin95@yahoo.co.jp (D.H.)) ,  Itoi, Takao (waga_a05m@yahoo.co.jp (K.W.)) ,  Nakase, Hiroshi (Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan)

Abstract AI-Helper 아이콘AI-Helper

Autophagy refers to the process involving the decomposition of intracellular components via lysosomes. Autophagy plays an important role in maintaining and regulating cell homeostasis by degrading intracellular components and providing degradation products to cells. In vivo, autophagy has been shown...

주제어

참고문헌 (157)

  1. 1. De Duve C. Pressman B.C. Gianetto R. Wattiaux R. Appelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue Biochem. J. 1955 60 604 617 10.1042/bj0600604 13249955 

  2. 2. Mizushima N. Ohsumi Y. Yoshimori T. Autophagosome formation in mammalian cells Cell Struct. Funct. 2002 27 421 429 10.1247/csf.27.421 12576635 

  3. 3. Tasset I. Cuervo A.M. Role of chaperone-mediated autophagy in metabolism FEBS J. 2016 283 2403 2413 10.1111/febs.13677 26854402 

  4. 4. Li W.W. Li J. Bao J.K. Microautophagy: Lesser-Known Self-Eating Cell. Mol. Life Sci. 2012 69 1125 1136 10.1007/s00018-011-0865-5 22080117 

  5. 5. Li L. Tan J. Miao Y. Lei P. Zhang Q. ROS and Autophagy: Interactions and Molecular Regulatory Mechanisms Cell. Mol. Neurobiol. 2015 35 615 621 10.1007/s10571-015-0166-x 25722131 

  6. 6. Liu E.Y. Xu N. O’Prey J. Lao L.Y. Joshi S. Long J.S. O’Prey M. Croft D.R. Beaumatin F. Baudot A.D. Loss of Autophagy Causes a Synthetic Lethal Deficiency in DNA Repair Proc. Natl. Acad. Sci. USA 2015 112 773 778 10.1073/pnas.1409563112 25568088 

  7. 7. Melendez A. Talloczy Z. Seaman M. Eskelinen E.L. Hall D.H. Levine B. Autophagy genes are essential for dauer development and life-span extension in C. elegans Science 2003 301 1387 1391 10.1126/science.1087782 12958363 

  8. 8. Uddin M.N. Nishio N. Ito S. Suzuki H. Isobe K. Autophagic activity in thymus and liver during aging Age (Dordr) 2012 34 75 85 10.1007/s11357-011-9221-9 21387084 

  9. 9. Simonsen A. Cumming R.C. Brech A. Isakson P. Schubert D.R. Finley K.D. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila Autophagy 2008 4 176 184 10.4161/auto.5269 18059160 

  10. 10. Fernandez A.F. Sebti S. Wei Y. Zou Z. Shi M. McMillan K.L. He C. Ting T. Liu Y. Chiang W.C. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice Nature 2018 558 136 140 10.1038/s41586-018-0162-7 29849149 

  11. 11. Mizushima N. Komatsu M. Autophagy: Renovation of cells and tissues Cell. 2011 147 728 741 10.1016/j.cell.2011.10.026 22078875 

  12. 12. Settembre C. Di Malta C. Polito V.A. Garcia A.M. Vetrini F. Erdin S. Erdin S.U. Huynh T. Medina D. Colella P. TFEB links autophagy to lysosomal biogenesis Science 2011 332 1429 1433 10.1126/science.1204592 21617040 

  13. 13. Palmieri M. Impey S. Kang H. Di Ronza A. Pelz C. Sardiello M. Ballabio A. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways Hum. Mol. Genet. 2011 20 3852 3866 10.1093/hmg/ddr306 21752829 

  14. 14. Settembre C. Zoncu R. Medina D.L. Vetrini F. Erdin S. Erdin S. Huynh T. Ferron M. Karsenty G. Vellard M.C. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB EMBO J. 2012 31 1095 1108 10.1038/emboj.2012.32 22343943 

  15. 15. Napolitano G. Esposito A. Choi H. Matarese M. Benedetti V. Di Malta C. Monfregola J. Medina D.L. Lippincott-Schwartz J. Ballabio A. mTOR-dependent phosphorylation controls TFEB nuclear export Nat. Commun. 2018 9 3312 10.1038/s41467-018-05862-6 30120233 

  16. 16. Saxton R.A. Sabatini D.M. mTOR Signaling in Growth, Metabolism, and Disease Cell 2017 168 960 976 10.1016/j.cell.2017.02.004 28283069 

  17. 17. Kim J. Kundu M. Viollet B. Guan K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 Nat. Cell Biol. 2011 13 132 141 10.1038/ncb2152 21258367 

  18. 18. Roczniak F.A. Petit C.S. Froehlich F. Qian S. Ky J. Angarola B. Walther T.C. Ferguson S.M. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis Sci. Signal. 2012 5 10.1126/scisignal.2002790 

  19. 19. Yang H. Jiang X. Li B. Yang H.J. Miller M. Yang A. Dhar A. Pavletich N.P. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40 Nature 2017 552 368 373 10.1038/nature25023 29236692 

  20. 20. Takahara T. Amemiya Y. Sugiyama R. Maki M. Shibata H. Amino acid-dependent control of mTORC1 signaling: A variety of regulatory modes J. Biomed. Sci. 2020 27 87 10.1186/s12929-020-00679-2 32799865 

  21. 21. Boukhalfa A. Nascimbeni A.C. Ramel D. Dupont N. Hirsch E. Gayral S. Laffargue M. Codogno P. Morel E. PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress Nat. Commun. 2020 11 294 10.1038/s41467-019-14086-1 31941925 

  22. 22. Osawa T. Noda N.N. Atg2: A novel phospholipid transfer protein that mediates de novo autophagosome biogenesis Protein Sci. 2019 28 1005 1012 10.1002/pro.3623 30993752 

  23. 23. Lystad A.H. Carlsson S.R. Simonsen A. Toward the function of mammalian ATG12-ATG5-ATG16L1 complex in autophagy and related processes Autophagy 2019 15 1485 1486 10.1080/15548627.2019.1618100 31122169 

  24. 24. Cadwell K. Liu J.Y. Brown S.L. Miyoshi H. Loh J. Lennerz J.K. Kishi C. Kc W. Carrero J.A. Hunt S. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells Nature 2008 456 259 263 10.1038/nature07416 18849966 

  25. 25. Brier L.W. Ge L. Stjepanovic G. Thelen A.M. Hurley J.H. Schekman R. Regulation of LC3 lipidation by the autophagy-specific class III phosphatidylinositol-3 kinase complex Mol. Biol. Cell. 2019 30 1098 1107 10.1091/mbc.E18-11-0743 30811270 

  26. 26. Galluzzi L. Green D.R. Autophagy-Independent Functions of the Autophagy Machinery Cell 2019 177 1682 1699 10.1016/j.cell.2019.05.026 31199916 

  27. 27. Takats S. Nagy P. Varga A. Pircs K. Karpati M. Varga K. Kovacs A.L. Hegeds K. Juhasz G. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila J. Cell. Biol. 2013 201 531 539 10.1083/jcb.201211160 23671310 

  28. 28. Matsui T. Jiang P. Nakano S. Sakamaki Y. Yamamoto H. Mizushima N. Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17 J. Cell. Biol. 2018 217 2633 2645 10.1083/jcb.201712058 29789439 

  29. 29. Zaffagnini G. Martens S. Mechanisms of Selective Autophagy J. Mol. Biol. 2016 428 1714 1724 10.1016/j.jmb.2016.02.004 26876603 

  30. 30. Vladimir R. Volker D. Terje J. Vladimir K. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy Mol. Cell. 2014 53 167 178 10.1016/j.molcel.2013.12.014 24462201 

  31. 31. Moscat J. Diaz-Meco M.T. Feedback on fat: p62-mTORC1-autophagy connections Cell 2011 147 724 727 10.1016/j.cell.2011.10.021 22078874 

  32. 32. Ichimura Y. Waguri S. Sou Y.S. Kageyama S. Hasegawa J. Ishimura R. Saito T. Yang Y. Kouno T. Fukutomi T. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy Mol. Cell. 2013 51 618 631 10.1016/j.molcel.2013.08.003 24011591 

  33. 33. Nunnari J. Suomalainen A. Mitochondria: In sickness and in health Cell 2012 148 1145 1159 10.1016/j.cell.2012.02.035 22424226 

  34. 34. Spinelli J.B. Haigis M.C. The multifaceted contributions of mitochondria to cellular metabolism Nat. Cell Biol. 2018 20 745 754 10.1038/s41556-018-0124-1 29950572 

  35. 35. Choudhury A.R. Singh K.K. Mitochondrial Determinants of Cancer Health Disparities Semin Cancer Biol. 2017 47 125 146 10.1016/j.semcancer.2017.05.001 28487205 

  36. 36. Chourasia A.H. Tracy K. Frankenberger C. Boland M.L. Sharifi M.N. Drake L.E. Sachleben J.R. Asara J.M. Locasale J.W. Karczmar G.S. Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis EMBO Rep. 2015 16 1145 1163 10.15252/embr.201540759 26232272 

  37. 37. Scorziello A. Borzacchiello D. Sisalli M.J. Di Martino R. Morelli M. Feliciello A. Mitochondrial Homeostasis and Signaling in Parkinson’s Disease Front. Aging Neurosci. 2020 12 100 10.3389/fnagi.2020.00100 32372945 

  38. 38. Lu X. Altshuler-Keylin S. Wang Q. Chen Y. Henrique S.C. Ikeda K. Maretich P. Yoneshiro T. Kajimura S. Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism Sci. Signal. 2018 11 eaap8526 10.1126/scisignal.aap8526 29692364 

  39. 39. Sato M. Sato K. Tomura K. Kosako H. Sato K. The autophagy receptor ALLO-1 and the IKKE-1 kinase control clearance of paternal mitochondria in Caenorhabditis elegans Nat. Cell Biol. 2018 20 81 91 10.1038/s41556-017-0008-9 29255173 

  40. 40. Sato M. Sato K. Maternal inheritance of mitochondrial DNA: Degradation of paternal mitochondria by allogeneic organelle autophagy, allophagy Autophagy 2012 8 424 425 10.4161/auto.19243 22302002 

  41. 41. Politi Y. Gal L. Kalifa Y. Ravid L. Elazar Z. Arama E. Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila Dev. Cell. 2014 29 305 320 10.1016/j.devcel.2014.04.005 24823375 

  42. 42. Rojansky R. Cha M.Y. Chan D.C. Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1 Elife 2016 5 e17896 10.7554/eLife.17896 27852436 

  43. 43. Schwarz D.S. Blower M.D. The endoplasmic reticulum: Structure, function and response to cellular signaling Cell. Mol. Life Sci. 2016 73 79 94 10.1007/s00018-015-2052-6 26433683 

  44. 44. Bolender R.P. Weibel E.R. A morphometric study of the removal of phenobarbital-induced membranes from hepatocytes after cessation of threatment J. Cell Biol. 1973 56 746 761 10.1083/jcb.56.3.746 4569312 

  45. 45. Feldman D. Swarm R.L. Becker J. Elimination of excess smooth endoplasmic reticulum after phenobarbital administration J. Histochem. Cytochem. 1980 28 997 1006 10.1177/28.9.7410819 7410819 

  46. 46. Khaminets A. Heinrich T. Mari M. Grumati P. Huebner A.K. Akutsu M. Liebmann L. Stolz A. Nietzsche S. Koch N. Regulation of endoplasmic reticulum turnover by selective autophagy Nature 2015 522 354 358 10.1038/nature14498 26040720 

  47. 47. Peng Y. Shapiro S.L. Banduseela V.C. Dieterich I.A. Hewitt K.J. Bresnick E.H. Kong G. Zhang J. Schueler K.L. Keller M.P. Increased transport of acetyl-CoA into the endoplasmic reticulum causes a progeria-like phenotype Aging Cell. 2018 17 e12820 10.1111/acel.12820 30051577 

  48. 48. Radulovic M. Schink K.O. Wenzel E.M. Nahse V. Bongiovanni A. Lafont F. Stenmark H. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival EMBO J. 2018 37 e99753 10.15252/embj.201899753 30314966 

  49. 49. Maejima I. Takahashi A. Omori H. Kimura T. Takabatake Y. Saitoh T. Yamamoto A. Hamasaki M. Noda T. Isaka Y. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury EMBO J. 2013 32 2336 2347 10.1038/emboj.2013.171 23921551 

  50. 50. Roberts P. Moshitch-Moshkovitz S. Kvam E. O’Toole E. Winey M. Goldfarb D.S. Piecemeal Microautophagy of Nucleus in Saccharomyces cerevisiae Mol. Biol. Cell 2003 14 129 141 10.1091/mbc.e02-08-0483 12529432 

  51. 51. Mochida K. Oikawa Y. Kimura Y. Kirisako H. Hirano H. Ohsumi Y. Nakatogawa H. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus Nat. Cell Biol. 2015 522 359 362 10.1038/nature14506 26040717 

  52. 52. Dou Z. Xu C. Donahue G. Shimi T. Pan J.A. Zhu J. Ivanov A. Capell B.C. Drake A.M. Shah P.P. Autophagy mediates degradation of nuclear lamina Nature 2015 527 105 109 10.1038/nature15548 26524528 

  53. 53. Zhang J. Tripathi D.N. Jing J. Alexander A. Kim J. Powell R.T. Dere R. Tait-Mulder J. Lee J.H. Paull T.T. ATM functions at the peroxisome to induce pexophagy in response to ROS Nat. Cell Biol. 2015 17 1259 1269 10.1038/ncb3230 26344566 

  54. 54. Yamashita S. Abe K. Tatemichi Y. Fujiki Y. The membrane peroxin PEX3 induces peroxisome-ubiquitination-linked pexophagy Autophagy 2014 10 1549 1564 10.4161/auto.29329 25007327 

  55. 55. Singh R. Kaushik S. Wang Y. Xiang Y. Novak I. Komatsu M. Tanaka K. Cuervo A.M. Czaja M.J. Autophagy regulates lipid metabolism Nature 2009 458 1131 1135 10.1038/nature07976 19339967 

  56. 56. Shun-saku T. Yu-Shin S. Tetsuya S. Akiko K. Takayuki Y. Masato K. Shuji T. Noboru M. Satoshi W. Masaaki, Komatsu bioRixiv 2019 10.1101/722686 

  57. 57. Kwon D.H. Song H.K. A Structural View of Xenophagy, a Battle between Host and Microbes Mol. Cells 2018 41 27 34 10.14348/molcells.2018.2274 29370690 

  58. 58. Fujita N. Morita E. Itoh T. Tanaka A. Nakaoka M. Osada Y. Umemoto T. Saitoh T. Nakatogawa H. Kobayashi S. Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin J. Cell Biol. 2013 203 115 128 10.1083/jcb.201304188 24100292 

  59. 59. Choy A. Dancourt J. Mugo B. O’Connor T.J. Isberg R.R. Melia T.J. Roy C.R. The Legionella Effector RavZ Inhibits Host Autophagy Through Irreversible Atg8 Deconjugation Science 2012 338 1072 1076 10.1126/science.1227026 23112293 

  60. 60. Verhoef L.G. Lindsten K. Masucci M.G. Dantuma N.P. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins Hum. Mol. Genet. 2002 11 2689 2700 10.1093/hmg/11.22.2689 12374759 

  61. 61. De S. Wirthensohn D.C. Flagmeier P. Hughes C. Aprile F.A. Ruggeri F.S. Whiten D.R. Emin D. Xia Z. Varela J.A. Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms Nat. Commun. 2019 10 1541 10.1038/s41467-019-09477-3 30948723 

  62. 62. Fusco G. Chen S.W. Williamson P.T.F. Cascella R. Perni M. Jarvis J.A. Cecchi C. Vendruscolo M. Chiti F. Cremades N. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers Science 2017 358 1440 1443 10.1126/science.aan6160 29242346 

  63. 63. Lamark T. Johansen T. Aggrephagy: Selective disposal of protein aggregates by macroautophagy Int. J. Cell Biol. 2012 736905 10.1155/2012/736905 22518139 

  64. 64. Kraft C. Deplazes A. Sohrmann M. Peter M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease Nat. Cell Biol. 2008 10 602 610 10.1038/ncb1723 18391941 

  65. 65. Wyant G.A. Abu-Remaileh M. Frenkel E.M. Laqtom N.N. Dharamdasani V. Lewis C.A. Chan S.H. Heinze I. Ori A. Sabatini D.M. NUFIP1 is a ribosome receptor for starvation-induced ribophagy Science 2018 360 751 758 10.1126/science.aar2663 29700228 

  66. 66. Tomioka Y. Kotani T. Kirisako H. Oikawa Y. Kimura Y. Hirano H. Ohsumi Y. Nakatogawa H. TORC1 inactivation stimulates autophagy of nucleoporin and nuclear pore complexes J. Cell Biol. 2020 219 e201910063 10.1083/jcb.201910063 32453403 

  67. 67. Lee C.W. Wilfling F. Ronchi P. Allegretti M. Mosalaganti S. Jentsch S. Beck M. Pfander B. Selective autophagy degrades nuclear pore complexes Nat. Cell Biol. 2020 22 159 166 10.1038/s41556-019-0459-2 32029894 

  68. 68. Fujiwara Y. Furuta A. Kikuchi H. Aizawa S. Hatanaka Y. Konya C. Uchida K. Yoshimura A. Tamai Y. Wada K. Discovery of a novel type of autophagy targeting RNA Autophagy 2013 9 403 409 10.4161/auto.23002 23291500 

  69. 69. Fujiwara Y. Kikuchi H. Aizawa S. Furuta A. Hatanaka Y. Konya C. Uchida K. Wada K. Kabuta T. Direct uptake and degradation of DNA by lysosomes Autophagy 2013 9 1167 1171 10.4161/auto.24880 23839276 

  70. 70. Aizawa S. Contu V.R. Fujiwara Y. Hase K. Kikuchi H. Kabuta C. Wada K. Kabuta T. Lysosomal membrane protein SIDT2 mediates the direct uptake of DNA by lysosomes Autophagy 2017 13 218 222 10.1080/15548627.2016.1248019 27846365 

  71. 71. Nguyen T.A. Bieging-Rolett K.T. Putoczki T.L. Wicks I.P. Attardi L.D. Pang K.C. SIDT2 RNA Transporter Promotes Lung and Gastrointestinal Tumor Development iScience 2019 20 14 24 10.1016/j.isci.2019.09.009 31546103 

  72. 72. Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation Curr. Opin. Cell Biol. 2010 22 132 139 10.1016/j.ceb.2009.12.004 20056399 

  73. 73. Liu H.Y. Han J. Cao S.Y. Hong T. Zhuo D. Shi J. Liu Z. Cao W. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: Inhibition of FoxO1-dependent expression of key autophagy genes by insulin J. Biol. Chem. 2009 284 31484 31492 10.1074/jbc.M109.033936 19758991 

  74. 74. Tanaka S. Hikita H. Tatsumi T. Sakamori R. Nozaki Y. Sakane S. Shiode Y. Nakabori T. Saito Y. Hiramatsu N. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice Hepatology 2016 64 1994 2014 10.1002/hep.28820 27637015 

  75. 75. Ding W.X. Li M. Chen X. Ni H.M. Lin C.W. Gao W. Lu B. Stolz D.B. Clemens D.L. Yin X.M. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice Gastroenterology 2010 139 1740 1752 10.1053/j.gastro.2010.07.041 20659474 

  76. 76. Babuta M. Furi I. Bala S. Bukong T.N. Lowe P. Catalano D. Calenda C. Kodys K. Szabo G. Dysregulated Autophagy and Lysosome Function Are Linked to Exosome Production by Micro-RNA 155 in Alcoholic Liver Disease Hepatology 2019 70 2123 2141 10.1002/hep.30766 31090940 

  77. 77. Jung H.S. Chung K.W. Won Kim J. Kim J. Komatsu M. Tanaka K. Nguyen Y.H. Kang T.M. Yoon K.H. Kim J.W. Loss of Autophagy Diminishes Pancreatic β Cell Mass and Function with Resultant Hyperglycemia Cell Metab. 2008 8 318 324 10.1016/j.cmet.2008.08.013 18840362 

  78. 78. Ebato C. Uchida T. Arakawa M. Komatsu M. Ueno T. Komiya K. Azuma K. Hirose T. Tanaka K. Kominami E. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet Cell Metab. 2008 8 325 332 10.1016/j.cmet.2008.08.009 18840363 

  79. 79. Abedini A. Schmidt A.M. Mechanisms of islet amyloidosis toxicity in type 2 diabetes FEBS Lett. 2013 587 1119 1127 10.1016/j.febslet.2013.01.017 23337872 

  80. 80. Kim J. Cheon H. Jeong Y.T. Quan W. Kim K.H. Cho J.M. Lim Y.M. Oh S.H. Jin S.M. Kim J.H. Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes J. Clin. Invest. 2014 124 3311 3324 10.1172/JCI69625 25036705 

  81. 81. Kimura T. Takabatake Y. Takahashi A. Kaimori J.Y. Matsui I. Namba T. Kitamura H. Niimura F. Matsusaka T. Soga T. Autophagy Protects the Proximal Tubule from Degeneration and Acute Ischemic Injury J. Am. Soc. Nephrol. 2011 22 902 913 10.1681/ASN.2010070705 21493778 

  82. 82. Bonventre J.V. Yang L. Cellular pathophysiology of ischemic acute kidney injury J. Clin. Investig. 2011 121 4210 4221 10.1172/JCI45161 22045571 

  83. 83. Pabla N. Dong Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies Kidney Int. 2008 73 994 1007 10.1038/sj.ki.5002786 18272962 

  84. 84. Sharfuddin A.A. Molitoris B.A. Pathophysiology of ischemic acute kidney injury Nat. Rev. Nephrol. 2011 7 189 200 10.1038/nrneph.2011.16 21364518 

  85. 85. Jiang M. Wei Q. Dong G. Komatsu M. Su Y. Dong Z. Autophagy in proximal tubules protects against acute kidney injury Kidney Int. 2012 82 1271 1283 10.1038/ki.2012.261 22854643 

  86. 86. Wang Y. Tang C. Cai J. Chen G. Zhang D. Zhang Z. Dong Z. PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury Cell Death Dis. 2018 9 1113 10.1038/s41419-018-1152-2 30385753 

  87. 87. Hartleben B. Godel M. Meyer-Schwesinger C. Liu S. Ulrich T. Kobler S. Wiech T. Grahammer F. Arnold S.J. Lindenmeyer M.T. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice J. Clin. Investig. 2010 120 1084 1096 10.1172/JCI39492 20200449 

  88. 88. Fang L. Zhou Y. Cao H. Wen P. Jiang L. He W. Dai C. Yang J. Autophagy Attenuates Diabetic Glomerular Damage through Protection of Hyperglycemia-Induced Podocyte Injury PLoS ONE 2013 8 e60546 10.1371/journal.pone.0060546 23593240 

  89. 89. Yamaguchi O. Autophagy in the Heart Circ. J. 2019 83 697 704 10.1253/circj.CJ-18-1065 30814429 

  90. 90. Wang K. Xu Y. Sun Q. Long J. Liu J. Ding J. Mitochondria regulate cardiac contraction through ATP-dependent and independent mechanisms Free Radic. Res. 2018 52 1256 1265 10.1080/10715762.2018.1453137 29544373 

  91. 91. Taneike M. Yamaguchi O. Nakai A. Hikoso S. Takeda T. Mizote I. Oka T. Tamai T. Oyabu J. Murakawa T. Inhibition of autophagy in the heart induces age-related cardiomyopathy Autophagy 2010 6 600 606 10.4161/auto.6.5.11947 20431347 

  92. 92. Shirakabe A. Zhai P. Ikeda Y. Saito T. Maejima Y. Hsu C.P. Nomura M. Egashira K. Levine B. Sadoshima J. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure Circulation 2016 133 1249 1263 10.1161/CIRCULATIONAHA.115.020502 26915633 

  93. 93. Saito T. Asai K. Sato S. Hayashi M. Adachi A. Sasaki Y. Takano H. Mizuno K. Shimizu W. Autophagic vacuoles in cardiomyocytes of dilated cardiomyopathy with initially decompensated heart failure predict improved prognosis Autophagy 2016 12 579 587 10.1080/15548627.2016.1145326 26890610 

  94. 94. Maejima Y. Kyoi S. Zhai P. Liu T. Li H. Ivessa A. Sciarretta S. Del Re D.P. Zablocki D.K. Hsu C.P. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2 Nat. Med. 2013 19 1478 1488 10.1038/nm.3322 24141421 

  95. 95. Hampe J. Franke A. Rosenstiel P. Till A. Teuber M. Huse K. Albrecht M. Mayr G. De La Vega F.M. Briggs J. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1 Nat. Genet. 2007 39 207 211 10.1038/ng1954 17200669 

  96. 96. Ogura Y. Bonen D.K. Inohara N. Nicolae D.L. Chen F.F. Ramos R. Britton H. Moran T. Karaliuskas R. Duerr R.H. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease Nature 2001 411 603 606 10.1038/35079114 11385577 

  97. 97. McCarroll S.A. Huett A. Kuballa P. Chilewski S.D. Landry A. Goyette P. Zody M.C. Hall J.L. Brant S.R. Cho J.H. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease Nat. Genet. 2008 40 1107 1112 10.1038/ng.215 19165925 

  98. 98. Takagawa T. Kitani A. Fuss I. Levine B. Brant S.R. Peter I. Tajima M. Nakamura S. Strober W. An increase in LRRK2 suppresses autophagy and enhances Dectin-1-induced immunity in a mouse model of colitis Sci. Transl. Med. 2018 10 eaan8162 10.1126/scitranslmed.aan8162 29875204 

  99. 99. Henckaerts L. Cleynen I. Brinar M. John J.M. Van Steen K. Rutgeerts P. Vermeire S. Genetic variation in the autophagy gene ULK1 and risk of Crohn’s disease. Inflamm Bowel. Dis. 2011 17 1392 1397 10.1002/ibd.21486 

  100. 100. Iida T. Onodera K. Nakase H. Role of autophagy in the pathogenesis of inflammatory bowel disease World, J. Gastroenterol. 2017 23 1944 1953 10.3748/wjg.v23.i11.1944 28373760 

  101. 101. Farin H.F. Karthaus W.R. Kujala P. Rakhshandehroo M. Schwank G. Vries R.G. Kalkhoven E. Nieuwenhuis E.E. Clevers H. Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell?derived IFN-γ J. Exp. Med. 2014 211 1393 1405 10.1084/jem.20130753 24980747 

  102. 102. Duerkop B.A. Vaishnava S. Hooper L.V. Immune responses to the microbiota at the intestinal mucosal surface Immunity 2009 31 368 376 10.1016/j.immuni.2009.08.009 19766080 

  103. 103. Nighot P.K. Leung L. Ma T.Y. Chloride channel ClC- 2 enhances intestinal epithelial tight junction barrier function via regulation of caveolin-1 and caveolar trafficking of occluding Exp. Cell Res. 2017 352 113 122 10.1016/j.yexcr.2017.01.024 28161538 

  104. 104. Homer C.R. Richmond A.L. Rebert N.A. Achkar J.P. McDonald C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis Gastroenterology 2010 139 1630 1641 10.1053/j.gastro.2010.07.006 20637199 

  105. 105. Travassos L.H. Carneiro L.A. Ramjeet M. Hussey S. Kim Y.G. Magalhaes J.G. Yuan L. Soares F. Chea E. Le Bourhis L. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry Nat. Immunol. 2010 11 55 62 10.1038/ni.1823 19898471 

  106. 106. Murthy A. Li Y. Peng I. Reichelt M. Katakam A.K. Noubade R. Roose-Girma M. DeVoss J. Diehl L. Graham R.R. A Crohn’s disease variant in Atg16l1 enhances its degradation by caspase 3 Nature 2014 506 456 462 10.1038/nature13044 24553140 

  107. 107. Cadwell K. Patel K.K. Komatsu M. Virgin H.W. IV Stappenbeck T.S. A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease Autophagy 2009 5 250 252 10.4161/auto.5.2.7560 19139628 

  108. 108. Hunn J.P. Feng C.G. Sher A. Howard J.C. The immunity-related GTPases in mammals: A fast-evolving cell-autonomous resistance system against intracellular pathogens Mamm. Genome 2011 22 43 54 10.1007/s00335-010-9293-3 21052678 

  109. 109. Mehto S. Jena K.K. Nath P. Chauhan S. Kolapalli S.P. Das S.K. Sahoo P.K. Jain A. Taylor G.A. Chauhan S. The Crohn’s Disease Risk Factor IRGM Limits NLRP3 Inflammasome Activation by Impeding Its Assembly and by Mediating Its Selective Autophagy Mol. Cell. 2019 73 429 445 10.1016/j.molcel.2018.11.018 30612879 

  110. 110. Franke A. McGovern D.P. Barrett J.C. Wang K. Radford-Smith G.L. Ahmad T. Lees C.W. Balschun T. Lee J. Roberts R. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci Nat. Genet. 2010 42 1118 1125 10.1038/ng.717 21102463 

  111. 111. Zimprich A. Biskup S. Leitner P. Lichtner P. Farrer M. Lincoln S. Kachergus J. Hulihan M. Uitti R.J. Calne D.B. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology Neuron. 2004 44 601 607 10.1016/j.neuron.2004.11.005 15541309 

  112. 112. Zhang Q. Pan Y. Yan R. Zeng B. Wang H. Zhang X. Li W. Wei H. Liu Z. Commensal bacteria direct selective cargo sorting to promote symbiosis Nat. Immunol. 2015 16 918 926 10.1038/ni.3233 26237551 

  113. 113. Narendra D. Tanaka A. Suen D.F. Youle R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy J. Cell Biol. 2008 183 795 803 10.1083/jcb.200809125 19029340 

  114. 114. Valente E.M. Brancati F. Caputo V. Graham E.A. Davis M.B. Ferraris A. Breteler M.M. Gasser T. Bonifati V. Bentivoglio A.R. PARK6 is a common cause of familial parkinsonism Neurology 2002 23 117 118 10.1007/s100720200097 

  115. 115. Nalls M.A. McLean C.Y. Rick J. Eberly S. Hutten S.J. Gwinn K. Sutherland M. Martinez M. Heutink P. Williams N.M. Diagnosis of Parkinson’s disease on the basis of clinical and genetic classification: A population-based modelling study Lancet Neurol. 2015 14 1002 1009 10.1016/S1474-4422(15)00178-7 26271532 

  116. 116. Chang D. Nalls M.A. Hallgrimsdottir I.B. Hunkapiller J. van der Brug M. Cai F. International Parkinson’s Disease Genomics Consortium 23andMe Research Team Kerchner G.A. Ayalon G. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci Nat. Genet. 2017 49 1511 1516 10.1038/ng.3955 28892059 

  117. 117. Youle R.J. Narendra D.P. Mechanisms of mitophagy Nat. Rev. Mol. Cell Biol. 2011 12 9 14 10.1038/nrm3028 21179058 

  118. 118. Matsuda N. Sato S. Shiba K. Okatsu K. Saisho K. Gautier C.A. Sou Y.S. Saiki S. Kawajiri S. Sato F. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy J. Cell Biol. 2010 189 211 221 10.1083/jcb.200910140 20404107 

  119. 119. Wan H. Wang Q. Chen X. Zeng Q. Shao Y. Fang H. Liao X. Li H.S. Liu M.G. Xu T.L. WDR45 contributes to neurodegeneration through regulation of ER homeostasis and neuronal death Autophagy 2020 16 531 547 10.1080/15548627.2019.1630224 31204559 

  120. 120. Ashkenazi A. Bento C.F. Ricketts T. Vicinanza M. Siddiqi F. Pavel M. Squitieri F. Hardenberg M.C. Imarisio S. Menzies F.M. Polyglutamine tracts regulate beclin 1-dependent autophagy Nature 2017 545 108 111 10.1038/nature22078 28445460 

  121. 121. Wong Y.C. Holzbaur E.L. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation Proc. Nat. Acad. Sci. USA 2014 111 E4439 E4448 10.1073/pnas.1405752111 25294927 

  122. 122. Vantaggiato C. Panzeri E. Castelli M. Citterio A. Arnoldi A. Santorelli F.M. Liguori R. Scarlato M. Musumeci O. Toscano A. ZFYVE26/SPASTIZIN and SPG11/SPATACSIN mutations in hereditary spastic paraplegia types AR-SPG15 and AR-SPG11 have different effects on autophagy and endocytosis Autophagy 2019 15 34 57 10.1080/15548627.2018.1507438 30081747 

  123. 123. Colecchia D. Stasi M. Leonardi M. Manganelli F. Nolano M. Veneziani B.M. Santoro L. Eskelinen E.L. Chiariello M. Bucci C. Alterations of autophagy in the peripheral neuropathy Charcot-Marie-Tooth type 2B Autophagy 2018 14 930 941 10.1080/15548627.2017.1388475 29130394 

  124. 124. Lee Y. Jonson P.H. Sarparanta J. Palmio J. Sarkar M. Vihola A. Evila A. Suominen T. Penttila S. Savarese M. TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations J. Clin. Investig. 2018 128 1164 1177 10.1172/JCI97103 29457785 

  125. 125. Reddy P.H. Yin X. Manczak M. Kumar S. Pradeepkiran J.A. Vijayan M. Reddy A.P. Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease Hum. Mol. Genet. 2018 27 2502 2516 10.1093/hmg/ddy154 29701781 

  126. 126. Haack T.B. Hogarth P. Kruer M.C. Gregory A. Wieland T. Schwarzmayr T. Graf E. Sanford L. Meyer E. Kara E. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA Am. J. Hum. Genet. 2012 91 1144 1149 10.1016/j.ajhg.2012.10.019 23176820 

  127. 127. Saitsu H. Nishimura T. Muramatsu K. Kodera H. Kumada S. Sugai K. Kasai-Yoshida E. Sawaura N. Nishida H. Hoshino A. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood Nat. Genet. 2013 45 445 449 10.1038/ng.2562 23435086 

  128. 128. Zhao Y.G. Sun L. Miao G. Ji C. Zhao H. Sun H. Miao L. Yoshii S.R. Mizushima N. Wang X. The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis Autophagy 2015 11 881 890 10.1080/15548627.2015.1047127 26000824 

  129. 129. Gonzalez-Rodriguez A. Mayoral R. Agra N. Valdecantos M.P. Pardo V. Miquilena-Colina M.E. Vargas-Castrillon J. Lo Iacono O. Corazzari M. Fimia G.M. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD Cell Death Dis. 2014 5 e1179 10.1038/cddis.2014.162 24743734 

  130. 130. Inami Y. Waguri S. Sakamoto A. Kouno T. Nakada K. Hino O. Watanabe S. Ando J. Iwadate M. Yamamoto M. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells J. Cell Biol. 2011 193 275 284 10.1083/jcb.201102031 21482715 

  131. 131. Sun D. Wu R. Zheng J. Li P. Yu L. Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation Cell Res. 2018 28 405 415 10.1038/s41422-018-0017-7 29507397 

  132. 132. Komatsu M. Waguri S. Koike M. Sou Y.S. Ueno T. Hara T. Mizushima N. Iwata J. Ezaki J. Murata S. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice Cell 2007 131 1149 1163 10.1016/j.cell.2007.10.035 18083104 

  133. 133. Ni H.M. Woolbright B.L. Williams J. Copple B. Cui W. Luyendyk J.P. Jaeschke H. Ding W.X. Nrf2 Promotes the Development of Fibrosis and Tumorigenesis in Mice with Defective Hepatic Autophagy J. Hepatol. 2014 61 617 625 10.1016/j.jhep.2014.04.043 24815875 

  134. 134. Li L. Shen C. Nakamura E. Ando K. Signoretti S. Beroukhim R. Cowley G.S. Lizotte P. Liberzon E. Bair S. SQSTM1 is a pathogenic target of 5q copy number gains in kidney cancer Cancer Cell. 2013 24 738 750 10.1016/j.ccr.2013.10.025 24332042 

  135. 135. Moscat J. Diaz-Meco M.T. p62: A versatile multitasker takes on cancer Trends Biochem. Sci. 2012 37 230 236 10.1016/j.tibs.2012.02.008 22424619 

  136. 136. Strohecker A.M. White E. Targeting mitochondrial metabolism by inhibiting autophagy in BRAF-driven cancers Cancer Discov. 2014 4 766 772 10.1158/2159-8290.CD-14-0196 24860158 

  137. 137. Yang S. Wang X. Contino G. Liesa M. Sahin E. Ying H. Bause A. Li Y. Stommel J.M. Dell’antonio G. Pancreatic cancers require autophagy for tumor growth Genes Dev. 2011 25 717 729 10.1101/gad.2016111 21406549 

  138. 138. Yang A. Kimmelman A.C. Inhibition of autophagy attenuates pancreatic cancer growth independent of TP53/TRP53 status Autophagy 2014 10 1683 1684 10.4161/auto.29961 25046107 

  139. 139. Guo J.Y. Teng X. Laddha S.V. Ma S. Van Nostrand S.C. Yang Y. Khor S. Chan C.S. Rabinowitz J.D. White E. Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells Genes Dev. 2016 30 1704 1717 10.1101/gad.283416.116 27516533 

  140. 140. Guo J.Y. White E. Autophagy is required for mitochondrial function, lipid metabolism, growth, and fate of KRAS(G12D)-driven lung tumors Autophagy 2013 9 1636 1638 10.4161/auto.26123 23959381 

  141. 141. Chen S. Wang C. Yeo S. Liang C.C. Okamoto T. Sun S. Wen J. Guan J.L. Distinct roles of autophagy-dependent and -independent functions of FIP200 revealed by generation and analysis of a mutant knock-in mouse model Genes Dev. 2016 30 856 869 10.1101/gad.276428.115 27013233 

  142. 142. Wei H. Wei S. Gan B. Peng X. Zou W. Guan J.L. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis Genes Dev. 2011 25 1510 1527 10.1101/gad.2051011 21764854 

  143. 143. Perera R.M. Di Malta C. Ballabio A. MiT/TFE Family of Transcription Factors, Lysosomes, and Cancer Annu Rev. Cancer Biol. 2019 3 203 222 10.1146/annurev-cancerbio-030518-055835 31650096 

  144. 144. Perera R.M. Stoykova S. Nicolay B.N. Ross K.N. Fitamant J. Boukhali M. Lengrand J. Deshpande V. Selig M.K. Ferrone C.R. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism Nature 2015 524 361 365 10.1038/nature14587 26168401 

  145. 145. Wong P.M. Feng Y. Wang J. Shi R. Jiang X. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A Nat. Commun. 2015 6 8048 10.1038/ncomms9048 26310906 

  146. 146. Bryant K.L. Stalnecker C.A. Zeitouni D. Klomp J.E. Peng S. Tikunov A.P. Gunda V. Pierobon M. Waters A.M. George S.D. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer Nat. Med. 2019 25 628 640 10.1038/s41591-019-0368-8 30833752 

  147. 147. Guo J.Y. Chen H.Y. Mathew R. Fan J. Strohecker A.M. Karsli-Uzunbas G. Kamphorst J.J. Chen G. Lemons J.M. Karantza V. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis Genes Dev. 2011 25 460 470 10.1101/gad.2016311 21317241 

  148. 148. Guo J.Y. Karsli-Uzunbas G. Mathew R. Aisner S.C. Kamphorst J.J. Strohecker A.M. Chen G. Price S. Lu W. Teng X. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis Genes Dev. 2013 27 1447 1461 10.1101/gad.219642.113 23824538 

  149. 149. Ichikawa A. Fujita Y. Hosaka Y. Kadota T. Ito A. Yagishita S. Watanabe N. Fujimoto S. Kawamoto H. Saito N. Chaperone-mediated autophagy receptor modulates tumor growth and chemoresistance in non-small cell lung cancer Cancer Sci. 2020 111 4154 4165 10.1111/cas.14629 32860290 

  150. 150. Scherz-Shouval R. Weidberg H. Gonen C. Wilder S. Elazar Z. Oren M. p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation Proc. Natl. Acad. Sci. USA 2010 107 18511 18516 10.1073/pnas.1006124107 20937856 

  151. 151. Zheng H.Y. Zhang X.Y. Wang X.F. Sun B.C. Autophagy enhances the aggressiveness of human colorectal cancer cells and their ability to adapt to apoptotic stimulus Cancer Biol. Med. 2012 9 105 110 10.3969/j.issn.2095-3941.2012.02.004 23691463 

  152. 152. Cho D.H. Jo Y.K. Kim S.C. Park I.J. Kim J.C. Down-regulated expression of ATG5 in colorectal cancer Anticancer Res. 2012 32 4091 4409 22993366 

  153. 153. Ahn C.H. Jeong E.G. Lee J.W. Kim M.S. Kim S.H. Kim S.S. Yoo N.J. Lee S.H. Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers APMIS 2007 115 1344 1349 10.1111/j.1600-0463.2007.00858.x 18184403 

  154. 154. Yang Z. Ghoorun R.A. Fan X. Wu P. Bai Y. Li J. Chen H. Wang L. Wang J. High expression of Beclin-1 predicts favorable prognosis for patients with colorectal cancer Clin. Res. Hepatol. Gastroenterol. 2015 39 98 106 10.1016/j.clinre.2014.06.014 25130795 

  155. 155. Park J.M. Huang S. Wu T.T. Foster N.R. Sinicrope F.A. Prognostic impact of Beclin 1, p62/sequestosome 1 and LC3 protein expression in colon carcinomas from patients receiving 5-fluorouracil as adjuvant chemotherapy Cancer Biol. Ther. 2013 14 100 107 10.4161/cbt.22954 23192274 

  156. 156. Liang X.H. Jackson S. Seaman M. Brown K. Kempkes B. Hibshoosh H. Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1 Nature 1999 402 672 676 10.1038/45257 10604474 

  157. 157. Vera-Ramirez L. Vodnala S.K. Nini R. Hunter K.W. Green J.E. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence Nat. Commun. 2018 9 1944 10.1038/s41467-018-04070-6 29789598 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로