$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Classification of Landscape Affected by Deforestation Using High-Resolution Remote Sensing Data and Deep-Learning Techniques 원문보기

Remote sensing, v.12 no.20, 2020년, pp.3372 -   

Lee, Seong-Hyeok (Center for Environmental Data Strategy, Korea Environment Institute, Sejong 30147, Korea) ,  Han, Kuk-Jin (Center for Environmental Data Strategy, Korea Environment Institute, Sejong 30147, Korea) ,  Lee, Kwon (MindForge, Seoul 08377, Korea) ,  Lee, Kwang-Jae (Korea Aerospace Research Institute, Daejeon 34133, Korea) ,  Oh, Kwan-Young (Korea Aerospace Research Institute, Daejeon 34133, Korea) ,  Lee, Moung-Jin (Center for Environmental Data Strategy, Korea Environment Institute, Sejong 30147, Korea)

Abstract AI-Helper 아이콘AI-Helper

Human-induced deforestation has a major impact on forest ecosystems and therefore its detection and analysis methods should be improved. This study classified landscape affected by human-induced deforestation efficiently using high-resolution remote sensing and deep-learning. The SegNet and U-Net al...

참고문헌 (58)

  1. (2020, June 17). World Wide Fund for Nature Home Page. Available online: https://wwf.panda.org/our_work/forests/importance_forests/. 

  2. Banskota Forest Monitoring using Landsat Time Series Data: A Review Can. J. Remote Sens. 2014 10.1080/07038992.2014.987376 40 362 

  3. 10.3390/ijgi5070106 Yang, J., Su, J., Chen, F., Xie, P., and Ge, Q. (2016). A local land use competition cellular automata model and its application. ISPRS Int. J. Geo-Inf., 5. 

  4. He An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on landsat 8 image Sustain. Cities Soc. 2019 10.1016/j.scs.2018.10.049 44 416 

  5. 10.3390/rs11091016 Liu, H., Zhan, Q., Gao, S., and Yang, C. (2019). Seasonal variation of the spatially non-stationary association between land surface temperature and urban landscape. Remote Sens., 11. 

  6. (2016, July 21). American Forest Home Page. Available online: https://www.americanforests.org/blog/much-forests-worth/. 

  7. (2020, June 20). USDA Forest Service and NY State Department of Environmental Conservation Home Page, Available online: https://www.dec.ny.gov/lands/40243.html. 

  8. Croitoru Valuing the Non-Timber Forest Products in the Mediterranean Region Ecol. Econ. 2007 10.1016/j.ecolecon.2007.01.014 63 768 

  9. Kim Valuation of Nonmarket Forest Resources Korean Inst. For. Recreat. Welf. 2012 10.34272/forest.2012.16.4.002 16 9 

  10. Kuvan Mass Tourism Development and Deforestation in Turkey Anatolia 2010 10.1080/13032917.2010.9687096 21 155 

  11. Hosonuma An Assessment of Deforestation and Forest Degradation Drivers in Developing Countries Environ. Res. Lett. 2012 10.1088/1748-9326/7/4/044009 7 044009 

  12. Clerici Deforestation in Colombian Protected Areas Increased during Post-Conflict Periods Sci. Rep. 2020 10.1038/s41598-020-61861-y 10 4971 

  13. 10.1007/978-3-030-03362-0_3 Wang, C., Myint, S.W., and Hutchins, M. (2019). The Assessment of Deforestation, Forest Degradation, and Carbon Release in Myanmar 2000-2010. Environmental Change in the Himalayan Region, Springer. 

  14. (2019, August 29). Korea Forest Service Home Page. Available online: http://forest.go.kr. 

  15. Fuller Tropical Forest Monitoring and Remote Sensing: A New Era of Transparency in Forest Governance? Singap. J. Trop. Geogr. 2006 10.1111/j.1467-9493.2006.00237.x 27 15 

  16. Dalponte Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas IEEE Trans. Geosci. Remote Sens. 2008 10.1109/TGRS.2008.916480 46 1416 

  17. Harriss Deforestation in Costa Rica: A quantitative analysis using remote sensing imagery 1 Biotropica 2001 10.1111/j.1744-7429.2001.tb00192.x 33 378 

  18. Mertens Impact of Macroeconomic Change on Deforestation in South Cameroon: Integration of Household Survey and Remotely-Sensed Data World Dev. 2000 10.1016/S0305-750X(00)00007-3 28 983 

  19. Frohn Using Satellite Remote Sensing Analysis to Evaluate a Socio-Economic and Ecological Model of Deforestation in Rondonia, Brazil Remote Sens. 1996 10.1080/01431169608949141 17 3233 

  20. McCracken Remote Sensing and GIS at Farm Property Level: Demography and Deforestation in the Brazilian Amazon. Photogramm Eng. Remote Sens. 1999 65 1311 

  21. Chowdhury Driving Forces of Tropical Deforestation: The Role of Remote Sensing and Spatial Models Singap. J. Trop. Geogr. 2006 10.1111/j.1467-9493.2006.00241.x 27 82 

  22. Buchanan Using Remote Sensing to Inform Conservation Status Assessment: Estimates of Recent Deforestation Rates on New Britain and the Impacts upon Endemic Birds Biol. Conserv. 2008 10.1016/j.biocon.2007.08.023 141 56 

  23. Achard Forest Classification of Southeast Asia using NOAA AVHRR Data Remote Sens. Environ. 1995 10.1016/0034-4257(95)00153-0 54 198 

  24. Bogaert Forest Change Detection by Statistical Object-Based Method Remote Sens. Environ. 2006 10.1016/j.rse.2006.01.013 102 1 

  25. Lary Machine Learning in Geosciences and Remote Sensing Geosci. Front. 2016 10.1016/j.gsf.2015.07.003 7 3 

  26. Carreiras Land-Cover Mapping in the Brazilian Amazon using SPOT-4 Vegetation Data and Machine Learning Classification Methods Photogramm. Eng. Remote Sens. 2006 10.14358/PERS.72.8.897 72 897 

  27. Papa Efficient Supervised Optimum-Path Forest Classification for Large Datasets Pattern Recognit. 2012 10.1016/j.patcog.2011.07.013 45 512 

  28. Li Machine Learning Approaches for Forest Classification and Change Analysis using Multi-Temporal Landsat TM Images Over Huntington Wildlife Forest GISci. Remote Sens. 2013 10.1080/15481603.2013.819161 50 361 

  29. LeCun Deep Learning Nature 2015 10.1038/nature14539 521 436 

  30. 10.1109/ICPR.2014.199 Hafemann, L.G., Oliveira, L.S., and Cavalin, P. (2014, January 24-28). Forest Species Recognition using Deep Convolutional Neural Networks. Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden. 

  31. 10.1109/PACRIM.2017.8121895 Bragilevsky, L., and Bajic, I.V. (2017, January 21-23). Deep Learning for Amazon Satellite Image Analysis. Proceedings of the 2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada. 

  32. Xu, E., and Zeng, O. (2020, June 30). Predicting Amazon Deforestation with Satellite Images. Available online: http://cs231n.stanford.edu/reports/2017/pdfs/916.pdf. 

  33. 10.1109/ICRA.2017.7989229 Shah, U., Khawad, R., and Krishna, K.M. (June, January 29). Detecting, Localizing, and Recognizing Trees with a Monocular MAV: Towards Preventing Deforestation. Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore. 

  34. 10.3390/s20020563 Lobo Torres, D., Queiroz Feitosa, R., Nigri Happ, P., La Rosa, L.E.C., Marcato, J., Martins, J., Olã Bressan, P., Gonçalves, W.N., and Liesenberg, V. (2020). Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery. Sensors, 20. 

  35. 10.3390/rs12060901 De Bem, P.P., de Carvalho, J., Osmar, A., Fontes, G.R., and Trancoso, G.R.A. (2020). Change Detection of Deforestation in the Brazilian Amazon using Landsat Data and Convolutional Neural Networks. Remote Sens., 12. 

  36. Andersson, V. (2020, June 25). Semantic Segmentation: Using Convolutional Neural Networks and Sparse Dictionaries. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139367. 

  37. 10.1109/CVPR.2015.7298965 Long, J., Shelhamer, E., and Darrell, T. (2015, January 7-12). Fully Convolutional Networks for Semantic Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA. 

  38. 10.1109/CBMI.2018.8516552 Cao, R., and Qiu, G. (2018, January 4-6). Urban Land use Classification Based on Aerial and Ground Images. Proceedings of the 2018 International Conference on Content-Based Multimedia Indexing (CBMI), La Rochelle, France. 

  39. Badrinarayanan Segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation IEEE Trans. Pattern Anal. Mach. Intell. 2017 10.1109/TPAMI.2016.2644615 39 2481 

  40. 10.1016/j.asoc.2018.05.018 Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., and Garcia-Rodriguez, J. (2017). A Review on Deep Learning Techniques Applied to Semantic Segmentation. arXiv. 

  41. 10.1109/CVPRW.2017.199 Audebert, N., Le Saux, B., and Lefèvre, S. (2017, January 21-26). Joint Learning from Earth Observation and Openstreetmap Data to Get Faster Better Semantic Maps. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA. 

  42. 10.1007/978-3-319-24574-4_28 Ronneberger, O., Fischer, P., and Brox, T. (2015, January 5-9). U-Net: Convolutional Networks for Biomedical Image Segmentation. Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany. 

  43. Liu Classification of Tree Species and Stock Volume Estimation in Ground Forest Images using Deep Learning Comput. Electron. Agric. 2019 10.1016/j.compag.2019.105012 166 105012 

  44. 10.20944/preprints201906.0270.v1 Stoian, A., Poulain, V., Inglada, J., Poughon, V., and Derksen, D. (2019). Land Cover Maps Production with High Resolution Satellite Image Time Series and Convolutional Neural Networks: Adaptations and Limits for Operational Systems. Remote Sens., 11. 

  45. 10.1007/978-981-15-2188-1_4 Soni, A., Koner, R., and Villuri, V.G.K. (2019, January 12-14). M-UNet: Modified U-Net Segmentation Framework with Satellite Imagery. Proceedings of the Global AI Congress, Kolkata, India. 

  46. Chavez Image-Based Atmospheric Corrections-Revisited and Improved Photogramm. Eng. Remote Sens. 1996 62 1025 

  47. 10.1109/IGARSS.2012.6351607 Zhang, Y., and Mishra, R.K. (2012, January 22-27). A Review and Comparison of Commercially Available Pan-Sharpening Techniques for High Resolution Satellite Image Fusion. Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany. 

  48. 10.5220/0007675300330040 Ghorbanzadeh, O., and Blaschke, T. (2019, January 3-5). Optimizing Sample Patches Selection of CNN to Improve the mIOU on Landslide Detection. Proceedings of the GISTAM, Heraklion, Greece. 

  49. 10.1109/CVPR.2019.00656 Kirillov, A., Girshick, R., He, K., and Dollár, P. (2019, January 16-20). Panoptic Feature Pyramid Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA. 

  50. 10.1109/IGARSS.2018.8518338 López-Fandiño, J., Garea, A.S., Heras, D.B., and Argüello, F. (2018, January 22-27). Stacked Autoencoders for Multiclass Change Detection in Hyperspectral Images. Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain. 

  51. Martins, F.F., and Zaglia, M.C. (2019, January 11-13). Application of Convolutional Neural Network to Pixel-Wise Classification in Deforestation Detection using PRODES Data. Proceedings of the Geoinfo, São José dos Campos, Brazil. 

  52. Ortega Evaluation of Deep Learning Techniques for Deforestation Detection in the Amazon Forest ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019 2019 4 

  53. Luo Temporal and Spatial Deep Learning Network for Infrared Thermal Defect Detection NDT E Int. 2019 10.1016/j.ndteint.2019.102164 108 102164 

  54. Singh, V.K., Rashwan, H.A., Abdel-Nasser, M., Sarker, M., Kamal, M., Akram, F., Pandey, N., Romani, S., and Puig, D. (2019). An Efficient Solution for Breast Tumor Segmentation and Classification in Ultrasound Images using Deep Adversarial Learning. arXiv. 

  55. Zhang, X., Wu, B., Zhu, L., Tian, F., and Zhang, M. (2018). Land use Mapping in the Three Gorges Reservoir Area Based on Semantic Segmentation Deep Learning Method. arXiv. 

  56. 10.1080/10106049.2020.1778100 Rastogi, K., Bodani, P., and Sharma, S.A. (2020). Automatic Building Footprint Extraction from very High-Resolution Imagery using Deep Learning Techniques. Geocarto Int., 1-14. 

  57. 10.3390/ijgi9080478 Han, Z., Dian, Y., Xia, H., Zhou, J., Jian, Y., Yao, C., Wang, X., and Li, Y. (2020). Comparing Fully Deep Convolutional Neural Networks for Land Cover Classification with High-Spatial-Resolution Gaofen-2 Images. ISPRS Int. J. Geo-Inf., 9. 

  58. Li, R., Zheng, S., and Duan, C. (2020). Land Cover Classification from Remote Sensing Images Based on Multi-Scale Fully Convolutional Network. arXiv. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로