최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Remote sensing, v.12 no.20, 2020년, pp.3372 -
Lee, Seong-Hyeok (Center for Environmental Data Strategy, Korea Environment Institute, Sejong 30147, Korea) , Han, Kuk-Jin (Center for Environmental Data Strategy, Korea Environment Institute, Sejong 30147, Korea) , Lee, Kwon (MindForge, Seoul 08377, Korea) , Lee, Kwang-Jae (Korea Aerospace Research Institute, Daejeon 34133, Korea) , Oh, Kwan-Young (Korea Aerospace Research Institute, Daejeon 34133, Korea) , Lee, Moung-Jin (Center for Environmental Data Strategy, Korea Environment Institute, Sejong 30147, Korea)
Human-induced deforestation has a major impact on forest ecosystems and therefore its detection and analysis methods should be improved. This study classified landscape affected by human-induced deforestation efficiently using high-resolution remote sensing and deep-learning. The SegNet and U-Net al...
(2020, June 17). World Wide Fund for Nature Home Page. Available online: https://wwf.panda.org/our_work/forests/importance_forests/.
Banskota Forest Monitoring using Landsat Time Series Data: A Review Can. J. Remote Sens. 2014 10.1080/07038992.2014.987376 40 362
10.3390/ijgi5070106 Yang, J., Su, J., Chen, F., Xie, P., and Ge, Q. (2016). A local land use competition cellular automata model and its application. ISPRS Int. J. Geo-Inf., 5.
He An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on landsat 8 image Sustain. Cities Soc. 2019 10.1016/j.scs.2018.10.049 44 416
10.3390/rs11091016 Liu, H., Zhan, Q., Gao, S., and Yang, C. (2019). Seasonal variation of the spatially non-stationary association between land surface temperature and urban landscape. Remote Sens., 11.
(2016, July 21). American Forest Home Page. Available online: https://www.americanforests.org/blog/much-forests-worth/.
(2020, June 20). USDA Forest Service and NY State Department of Environmental Conservation Home Page, Available online: https://www.dec.ny.gov/lands/40243.html.
Croitoru Valuing the Non-Timber Forest Products in the Mediterranean Region Ecol. Econ. 2007 10.1016/j.ecolecon.2007.01.014 63 768
Kim Valuation of Nonmarket Forest Resources Korean Inst. For. Recreat. Welf. 2012 10.34272/forest.2012.16.4.002 16 9
Kuvan Mass Tourism Development and Deforestation in Turkey Anatolia 2010 10.1080/13032917.2010.9687096 21 155
Hosonuma An Assessment of Deforestation and Forest Degradation Drivers in Developing Countries Environ. Res. Lett. 2012 10.1088/1748-9326/7/4/044009 7 044009
Clerici Deforestation in Colombian Protected Areas Increased during Post-Conflict Periods Sci. Rep. 2020 10.1038/s41598-020-61861-y 10 4971
(2019, August 29). Korea Forest Service Home Page. Available online: http://forest.go.kr.
Fuller Tropical Forest Monitoring and Remote Sensing: A New Era of Transparency in Forest Governance? Singap. J. Trop. Geogr. 2006 10.1111/j.1467-9493.2006.00237.x 27 15
Dalponte Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas IEEE Trans. Geosci. Remote Sens. 2008 10.1109/TGRS.2008.916480 46 1416
Harriss Deforestation in Costa Rica: A quantitative analysis using remote sensing imagery 1 Biotropica 2001 10.1111/j.1744-7429.2001.tb00192.x 33 378
Mertens Impact of Macroeconomic Change on Deforestation in South Cameroon: Integration of Household Survey and Remotely-Sensed Data World Dev. 2000 10.1016/S0305-750X(00)00007-3 28 983
Frohn Using Satellite Remote Sensing Analysis to Evaluate a Socio-Economic and Ecological Model of Deforestation in Rondonia, Brazil Remote Sens. 1996 10.1080/01431169608949141 17 3233
McCracken Remote Sensing and GIS at Farm Property Level: Demography and Deforestation in the Brazilian Amazon. Photogramm Eng. Remote Sens. 1999 65 1311
Chowdhury Driving Forces of Tropical Deforestation: The Role of Remote Sensing and Spatial Models Singap. J. Trop. Geogr. 2006 10.1111/j.1467-9493.2006.00241.x 27 82
Buchanan Using Remote Sensing to Inform Conservation Status Assessment: Estimates of Recent Deforestation Rates on New Britain and the Impacts upon Endemic Birds Biol. Conserv. 2008 10.1016/j.biocon.2007.08.023 141 56
Achard Forest Classification of Southeast Asia using NOAA AVHRR Data Remote Sens. Environ. 1995 10.1016/0034-4257(95)00153-0 54 198
Bogaert Forest Change Detection by Statistical Object-Based Method Remote Sens. Environ. 2006 10.1016/j.rse.2006.01.013 102 1
Lary Machine Learning in Geosciences and Remote Sensing Geosci. Front. 2016 10.1016/j.gsf.2015.07.003 7 3
Carreiras Land-Cover Mapping in the Brazilian Amazon using SPOT-4 Vegetation Data and Machine Learning Classification Methods Photogramm. Eng. Remote Sens. 2006 10.14358/PERS.72.8.897 72 897
Papa Efficient Supervised Optimum-Path Forest Classification for Large Datasets Pattern Recognit. 2012 10.1016/j.patcog.2011.07.013 45 512
Li Machine Learning Approaches for Forest Classification and Change Analysis using Multi-Temporal Landsat TM Images Over Huntington Wildlife Forest GISci. Remote Sens. 2013 10.1080/15481603.2013.819161 50 361
LeCun Deep Learning Nature 2015 10.1038/nature14539 521 436
Xu, E., and Zeng, O. (2020, June 30). Predicting Amazon Deforestation with Satellite Images. Available online: http://cs231n.stanford.edu/reports/2017/pdfs/916.pdf.
10.3390/s20020563 Lobo Torres, D., Queiroz Feitosa, R., Nigri Happ, P., La Rosa, L.E.C., Marcato, J., Martins, J., Olã Bressan, P., Gonçalves, W.N., and Liesenberg, V. (2020). Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery. Sensors, 20.
10.3390/rs12060901 De Bem, P.P., de Carvalho, J., Osmar, A., Fontes, G.R., and Trancoso, G.R.A. (2020). Change Detection of Deforestation in the Brazilian Amazon using Landsat Data and Convolutional Neural Networks. Remote Sens., 12.
Andersson, V. (2020, June 25). Semantic Segmentation: Using Convolutional Neural Networks and Sparse Dictionaries. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139367.
Badrinarayanan Segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation IEEE Trans. Pattern Anal. Mach. Intell. 2017 10.1109/TPAMI.2016.2644615 39 2481
10.1016/j.asoc.2018.05.018 Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., and Garcia-Rodriguez, J. (2017). A Review on Deep Learning Techniques Applied to Semantic Segmentation. arXiv.
Liu Classification of Tree Species and Stock Volume Estimation in Ground Forest Images using Deep Learning Comput. Electron. Agric. 2019 10.1016/j.compag.2019.105012 166 105012
Chavez Image-Based Atmospheric Corrections-Revisited and Improved Photogramm. Eng. Remote Sens. 1996 62 1025
10.1109/IGARSS.2018.8518338 López-Fandiño, J., Garea, A.S., Heras, D.B., and Argüello, F. (2018, January 22-27). Stacked Autoencoders for Multiclass Change Detection in Hyperspectral Images. Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain.
Martins, F.F., and Zaglia, M.C. (2019, January 11-13). Application of Convolutional Neural Network to Pixel-Wise Classification in Deforestation Detection using PRODES Data. Proceedings of the Geoinfo, São José dos Campos, Brazil.
Ortega Evaluation of Deep Learning Techniques for Deforestation Detection in the Amazon Forest ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019 2019 4
Luo Temporal and Spatial Deep Learning Network for Infrared Thermal Defect Detection NDT E Int. 2019 10.1016/j.ndteint.2019.102164 108 102164
Singh, V.K., Rashwan, H.A., Abdel-Nasser, M., Sarker, M., Kamal, M., Akram, F., Pandey, N., Romani, S., and Puig, D. (2019). An Efficient Solution for Breast Tumor Segmentation and Classification in Ultrasound Images using Deep Adversarial Learning. arXiv.
Zhang, X., Wu, B., Zhu, L., Tian, F., and Zhang, M. (2018). Land use Mapping in the Three Gorges Reservoir Area Based on Semantic Segmentation Deep Learning Method. arXiv.
10.1080/10106049.2020.1778100 Rastogi, K., Bodani, P., and Sharma, S.A. (2020). Automatic Building Footprint Extraction from very High-Resolution Imagery using Deep Learning Techniques. Geocarto Int., 1-14.
10.3390/ijgi9080478 Han, Z., Dian, Y., Xia, H., Zhou, J., Jian, Y., Yao, C., Wang, X., and Li, Y. (2020). Comparing Fully Deep Convolutional Neural Networks for Land Cover Classification with High-Spatial-Resolution Gaofen-2 Images. ISPRS Int. J. Geo-Inf., 9.
Li, R., Zheng, S., and Duan, C. (2020). Land Cover Classification from Remote Sensing Images Based on Multi-Scale Fully Convolutional Network. arXiv.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.