$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay 원문보기

Proceedings of the National Academy of Sciences of the United States of America, v.118 no.30, 2021년, pp.e2024302118 - e2024302118  

Jang, Woo Dae (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea) ,  Jeon, Sangeun ,  Kim, Seungtaek (Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea) ,  Lee, Sang Yup

Abstract AI-Helper 아이콘AI-Helper

SignificanceRecent spread of SARS-CoV-2 has sparked significant health concerns of emerging infectious viruses. Drug repurposing is a tangible strategy for developing antiviral agents within a short period. In general, drug repurposing starts with virtual screening of approved drugs employing dockin...

Keyword

참고문헌 (55)

  1. 1 F. Wu ., A new coronavirus associated with human respiratory disease in China . Nature 579 , 265 ? 269 ( 2020 ). 32015508 

  2. 2 G. Cacciapaglia , C. Cot , F. Sannino , Second wave COVID-19 pandemics in Europe: A temporal playbook . Sci. Rep. 10 , 15514 ( 2020 ). 32968181 

  3. 3 M. Hoffmann ., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor . Cell 181 , 271 ? 280.e8 ( 2020 ). 32142651 

  4. 4 A. C. Walls ., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein . Cell 181 , 281 ? 292 .e6 ( 2020 ). 32155444 

  5. 5 E. De Clercq , Potential antivirals and antiviral strategies against SARS coronavirus infections . Expert Rev. Anti Infect. Ther. 4 , 291 ? 302 ( 2006 ). 16597209 

  6. 6 C. J. Gordon ., Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency . J. Biol. Chem. 295 , 6785 ? 6797 ( 2020 ). 32284326 

  7. 7 T. P. Sheahan ., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses . Sci. Transl. Med. 9 , eaal3653 ( 2017 ). 28659436 

  8. 8 M. Tahir Ul Qamar , S. M. Alqahtani , M. A. Alamri , L. L. Chen , Structural basis of SARS-CoV-2 3CL pro and anti-COVID-19 drug discovery from medicinal plants . J. Pharm. Anal. 10 , 313 ? 319 ( 2020 ). 32296570 

  9. 9 P. Zhou ., A pneumonia outbreak associated with a new coronavirus of probable bat origin . Nature 579 , 270 ? 273 ( 2020 ). 32015507 

  10. 10 L. Zhang ., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors . Science 368 , 409 ? 412 ( 2020 ). 32198291 

  11. 11 D. Shin ., Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity . Nature 587 , 657 ? 662 ( 2020 ). 32726803 

  12. 12 B. Cao ., A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19 . N. Engl. J. Med. 382 , 1787 ? 1799 ( 2020 ). 32187464 

  13. 13 C. M. Chu .; HKU/UCH SARS Study Group , Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings . Thorax 59 , 252 ? 256 ( 2004 ). 14985565 

  14. 14 B. N. Williamson ., Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2 . Nature 585 , 273 ? 276 ( 2020 ). 32516797 

  15. 15 J. Grein ., Compassionate use of remdesivir for patients with severe covid-19 . N. Engl. J. Med. 382 , 2327 ? 2336 ( 2020 ). 32275812 

  16. 16 J. H. Beigel , K. M. Tomashek , L. E. Dodd , Remdesivir for the treatment of covid-19 ? preliminary report . N. Engl. J. Med. 383 , 994 ( 2020 ). 32649078 

  17. 17 Y. Wang ., Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial . Lancet 395 , 1569 ? 1578 ( 2020 ). 32423584 

  18. 18 J. Li ., A survey of current trends in computational drug repositioning . Brief. Bioinform. 17 , 2 ? 12 ( 2016 ). 25832646 

  19. 19 Z. Jin ., Structure of M pro from SARS-CoV-2 and discovery of its inhibitors . Nature 582 , 289 ? 293 ( 2020 ). 32272481 

  20. 20 G. Ciliberto , L. Cardone , Boosting the arsenal against COVID-19 through computational drug repurposing . Drug Discov. Today 25 , 946 ? 948 ( 2020 ). 32304645 

  21. 21 J. Stebbing .; Sacco Baricitinib Study Group , Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients . EMBO Mol. Med. 12 , e12697 ( 2020 ). 32473600 

  22. 22 N. Singh , E. Decroly , A. M. Khatib , B. O. Villoutreix , Structure-based drug repositioning over the human TMPRSS2 protease domain: Search for chemical probes able to repress SARS-CoV-2 Spike protein cleavages . Eur. J. Pharm. Sci. 153 , 105495 ( 2020 ). 32730844 

  23. 23 R. Batra ., Screening of therapeutic agents for COVID-19 using machine learning and ensemble docking studies . J. Phys. Chem. Lett. 11 , 7058 ? 7065 ( 2020 ). 32787328 

  24. 24 C. Gorgulla ., An open-source drug discovery platform enables ultra-large virtual screens . Nature 580 , 663 ? 668 ( 2020 ). 32152607 

  25. 25 Y. Gao ., Structure of the RNA-dependent RNA polymerase from COVID-19 virus . Science 368 , 779 ? 782 ( 2020 ). 32277040 

  26. 26 V. Grum-Tokars , K. Ratia , A. Begaye , S. C. Baker , A. D. Mesecar , Evaluating the 3C-like protease activity of SARS-Coronavirus: Recommendations for standardized assays for drug discovery . Virus Res. 133 , 63 ? 73 ( 2008 ). 17397958 

  27. 27 D. S. Wishart ., DrugBank 5.0: A major update to the DrugBank database for 2018 . Nucleic Acids Res. 46 ( D1 ), D1074 ? D1082 ( 2018 ). 29126136 

  28. 28 T. Sterling , J. J. Irwin , ZINC 15-ligand discovery for everyone . J. Chem. Inf. Model. 55 , 2324 ? 2337 ( 2015 ). 26479676 

  29. 29 A. Gaulton ., The ChEMBL database in 2017 . Nucleic Acids Res. 45 ( D1 ), D945 ? D954 ( 2017 ). 27899562 

  30. 30 P. J. Ballester , W. G. Richards , Ultrafast shape recognition to search compound databases for similar molecular shapes . J. Comput. Chem. 28 , 1711 ? 1723 ( 2007 ). 17342716 

  31. 31 B. Nutho ., Why are lopinavir and ritonavir effective against the newly emerged coronavirus 2019? Atomistic insights into the inhibitory mechanisms . Biochemistry 59 , 1769 ? 1779 ( 2020 ). 32293875 

  32. 32 S. Salentin , S. Schreiber , V. J. Haupt , M. F. Adasme , M. Schroeder , PLIP: Fully automated protein-ligand interaction profiler . Nucleic Acids Res. 43 ( W1 ), W443-7 ( 2015 ). 25873628 

  33. 33 E. P. Tchesnokov , J. Y. Feng , D. P. Porter , M. Gotte , Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir . Viruses 11 , 326 ( 2019 ). 

  34. 34 W. Yin ., Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir . Science 368 , 1499 ? 1504 ( 2020 ). 32358203 

  35. 35 S. J. F. Kaptein ., Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity . Proc. Natl. Acad. Sci. U.S.A. 117 , 26955 ? 26965 ( 2020 ). 33037151 

  36. 36 Q. Cai ., Experimental treatment with favipiravir for COVID-19: An open-label control study . Engineering (Beijing) 6 , 1192 ? 1198 ( 2020 ). 32346491 

  37. 37 S. Jeon ., Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs . Antimicrob. Agents Chemother. 64 , e00819 ? e00820 ( 2020 ). 32366720 

  38. 38 M. Wang ., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro . Cell Res. 30 , 269 ? 271 ( 2020 ). 32020029 

  39. 39 K. T. Choy ., Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro . Antiviral Res. 178 , 104786 ( 2020 ). 32251767 

  40. 40 M. Mahevas ., Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: Observational comparative study using routine care data . BMJ 369 , m1844 ( 2020 ). 32409486 

  41. 41 S. D. Knight ., Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin . ACS Med. Chem. Lett. 1 , 39 ? 43 ( 2010 ). 24900173 

  42. 42 P. Munster ., First-in-human phase I study of GSK2126458, an oral pan-class I phosphatidylinositol-3-kinase inhibitor, in patients with advanced solid tumor malignancies . Clin. Cancer Res. 22 , 1932 ? 1939 ( 2016 ). 26603258 

  43. 43 P. T. Lukey ., A randomised, placebo-controlled study of omipalisib (PI3K/mTOR) in idiopathic pulmonary fibrosis . Eur. Respir. J. 53 , 1801992 ( 2019 ). 30765508 

  44. 44 P. M. George , A. U. Wells , R. G. Jenkins , Pulmonary fibrosis and COVID-19: The potential role for antifibrotic therapy . Lancet Respir. Med. 8 , 807 ? 815 ( 2020 ). 32422178 

  45. 45 K. Klann ., Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication . Mol. Cell 80 , 164 ? 174.e4 ( 2020 ). 32877642 

  46. 46 R. A. Mesa , Tipifarnib: Farnesyl transferase inhibition at a crossroads . Expert Rev. Anticancer Ther. 6 , 313 ? 319 ( 2006 ). 16503848 

  47. 47 T. Tenjin ., Profile of blonanserin for the treatment of schizophrenia . Neuropsychiatr. Dis. Treat. 9 , 587 ? 594 ( 2013 ). 23766647 

  48. 48 L. Shen , S. A. Rabi , R. F. Siliciano , A novel method for determining the inhibitory potential of anti-HIV drugs . Trends Pharmacol. Sci. 30 , 610 ? 616 ( 2009 ). 19837466 

  49. 49 W. R. Greco , G. Bravo , J. C. Parsons , The search for synergy: A critical review from a response surface perspective . Pharmacol. Rev. 47 , 331 ? 385 ( 1995 ). 7568331 

  50. 50 S. Loewe , Effect of combinations: Mathematical basis of problem . Arch. Exp. Pathol. Pharmakol. 114 , 313 ? 326 ( 1926 ). 

  51. 51 C. Bliss , The toxicity of poisons jointly applied . Ann. Appl. Biol. 26 , 585 ? 615 ( 1939 ). 

  52. 52 B. L. Jilek ., A quantitative basis for antiretroviral therapy for HIV-1 infection . Nat. Med. 18 , 446 ? 451 ( 2012 ). 22344296 

  53. 53 Y. Koizumi ., Quantifying antiviral activity optimizes drug combinations against hepatitis C virus infection . Proc. Natl. Acad. Sci. U.S.A. 114 , 1922 ? 1927 ( 2017 ). 28174263 

  54. 54 A. Ianevski , A. K. Giri , T. Aittokallio , SynergyFinder 2.0: Visual analytics of multi-drug combination synergies . Nucleic Acids Res. 48 ( W1 ), W488 ? W493 ( 2020 ). 32246720 

  55. 55 W. D. Jang , S. Y. Lee , Source code for virtual screening of drug repurposing against SARS-CoV-2. Bitbucket. https://bitbucket.org/kaistsystemsbiology/vs-covid19 . Deposited 9 October 2020. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로