$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Deep Learning-Based Intrusion Detection for Distributed Denial of Service Attack in Agriculture 4.0 원문보기

Electronics, v.10 no.11, 2021년, pp.1257 -   

Ferrag, Mohamed Amine (Department of Computer Science, Guelma University, Guelma 24000, Algeria) ,  Shu, Lei (College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China) ,  Djallel, Hamouda (Department of Computer Science, Guelma University, Guelma 24000, Algeria) ,  Choo, Kim-Kwang Raymond (Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX 78249, USA)

Abstract AI-Helper 아이콘AI-Helper

Smart Agriculture or Agricultural Internet of things, consists of integrating advanced technologies (e.g., NFV, SDN, 5G/6G, Blockchain, IoT, Fog, Edge, and AI) into existing farm operations to improve the quality and productivity of agricultural products. The convergence of Industry 4.0 and Intellig...

참고문헌 (50)

  1. Chen Smart factory of industry 4.0: Key technologies, application case, and challenges IEEE Access 2017 10.1109/ACCESS.2017.2783682 6 6505 

  2. Friha Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies IEEE/CAA J. Autom. Sin. 2021 10.1109/JAS.2021.1003925 8 718 

  3. Liu From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges IEEE Trans. Ind. Inform. 2020 10.1109/TII.2020.3003910 17 4322 

  4. Ferrag Security and Privacy for Green IoT-Based Agriculture: Review, Blockchain Solutions, and Challenges IEEE Access 2020 10.1109/ACCESS.2020.2973178 8 32031 

  5. Yang A Survey on Smart Agriculture: Development Modes, Technologies, and Security and Privacy Challenges IEEE/CAA J. Autom. Sin. 2021 10.1109/JAS.2020.1003536 8 273 

  6. Buczak A survey of data mining and machine learning methods for cyber security intrusion detection IEEE Commun. Surv. Tutor. 2015 10.1109/COMST.2015.2494502 18 1153 

  7. 10.3390/electronics10040372 Chen, J.W., Lin, W.J., Cheng, H.J., Hung, C.L., Lin, C.Y., and Chen, S.P. (2021). A smartphone-based application for scale pest detection using multiple-object detection methods. Electronics, 10. 

  8. Liao Intrusion detection system: A comprehensive review J. Netw. Comput. Appl. 2013 10.1016/j.jnca.2012.09.004 36 16 

  9. Muna Developing a Security Testbed for Industrial Internet of Things IEEE Internet Things J. 2020 8 5558 

  10. Kasongo A deep learning method with wrapper based feature extraction for wireless intrusion detection system Comput. Secur. 2020 10.1016/j.cose.2020.101752 92 101752 

  11. Hassan A hybrid deep learning model for efficient intrusion detection in big data environment Inf. Sci. 2020 10.1016/j.ins.2019.10.069 513 386 

  12. Li DeepFed: Federated Deep Learning for Intrusion Detection in Industrial Cyber-Physical Systems IEEE Trans. Ind. Inform. 2020 10.1109/TII.2020.3023430 17 5615 

  13. Gao Omni SCADA intrusion detection using deep learning algorithms IEEE Internet Things J. 2020 10.1109/JIOT.2020.3009180 8 951 

  14. Ferrag DeepCoin: A novel deep learning and blockchain-based energy exchange framework for smart grids IEEE Trans. Eng. Manag. 2019 10.1109/TEM.2019.2922936 67 1285 

  15. Nie Data-Driven Intrusion Detection for Intelligent Internet of Vehicles: A Deep Convolutional Neural Network-based Method IEEE Trans. Netw. Sci. Eng. 2020 10.1109/TNSE.2020.2990984 7 2219 

  16. Abusitta A deep learning approach for proactive multi-cloud cooperative intrusion detection system Future Gener. Comput. Syst. 2019 10.1016/j.future.2019.03.043 98 308 

  17. Kamilaris Deep learning in agriculture: A survey Comput. Electron. Agric. 2018 10.1016/j.compag.2018.02.016 147 70 

  18. (2021, May 01). Top 8 Challenges for Machine Learning Practitioners. Available online: https://towardsdatascience.com/top-8-challenges-for-machine-learning-practitioners-c4c0130701a1. 

  19. 10.14236/ewic/icscsr19.16 Ferrag, M.A., Maglaras, L., Janicke, H., and Smith, R. (2019, January 10-12). Deep learning techniques for cyber security intrusion detection: A detailed analysis. Proceedings of the 6th International Symposium for ICS & SCADA Cyber Security Research 2019, Athens, Greece. 

  20. Diro Distributed attack detection scheme using deep learning approach for Internet of Things Future Gener. Comput. Syst. 2018 10.1016/j.future.2017.08.043 82 761 

  21. Muna Identification of malicious activities in industrial internet of things based on deep learning models J. Inf. Secur. Appl. 2018 41 1 

  22. HaddadPajouh A deep recurrent neural network based approach for internet of things malware threat hunting Future Gener. Comput. Syst. 2018 10.1016/j.future.2018.03.007 85 88 

  23. Vinayakumar A visualized botnet detection system based deep learning for the Internet of Things networks of smart cities IEEE Trans. Ind. Appl. 2020 10.1109/TIA.2020.2971952 56 4436 

  24. Parra Detecting Internet of Things attacks using distributed deep learning J. Netw. Comput. Appl. 2020 10.1016/j.jnca.2020.102662 163 102662 

  25. Latif A Novel Attack Detection Scheme for the Industrial Internet of Things Using a Lightweight Random Neural Network IEEE Access 2020 10.1109/ACCESS.2020.2994079 8 89337 

  26. Manimurugan Effective Attack Detection in Internet of Medical Things Smart Environment Using a Deep Belief Neural Network IEEE Access 2020 10.1109/ACCESS.2020.2986013 8 77396 

  27. Koroniotis A new network forensic framework based on deep learning for Internet of Things networks: A particle deep framework Future Gener. Comput. Syst. 2020 10.1016/j.future.2020.03.042 110 91 

  28. Zhou Variational LSTM enhanced anomaly detection for industrial big data IEEE Trans. Ind. Inform. 2020 10.1109/TII.2020.3022432 17 3469 

  29. Selvakumar Anomaly detection framework for Internet of things traffic using vector convolutional deep learning approach in fog environment Future Gener. Comput. Syst. 2020 10.1016/j.future.2020.07.020 113 255 

  30. 10.1109/WCNC45663.2020.9120761 Khoa, T.V., Saputra, Y.M., Hoang, D.T., Trung, N.L., Nguyen, D., Ha, N.V., and Dutkiewicz, E. (2020, January 25-28). Collaborative learning model for cyberattack detection systems in iot industry 4.0. Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea. 

  31. Popoola Hybrid Deep Learning for Botnet Attack Detection in the Internet of Things Networks IEEE Internet Things J. 2021 10.1109/JIOT.2020.3034156 8 4944 

  32. 10.1109/TNSE.2020.3032415 Al-Hawawreh, M., Moustafa, N., Garg, S., and Hossain, M.S. (2020). Deep Learning-enabled Threat Intelligence Scheme in the Internet of Things Networks. IEEE Trans. Netw. Sci. Eng. 

  33. Ge Towards a deep learning-driven intrusion detection approach for Internet of Things Comput. Netw. 2021 10.1016/j.comnet.2020.107784 186 107784 

  34. 10.1109/CCST.2019.8888419 Sharafaldin, I., Lashkari, A.H., Hakak, S., and Ghorbani, A.A. (2019, January 1-3). Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy. Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India. 

  35. (2021, April 04). TON_IOT DATASETS. Available online: https://ieee-dataport.org/documents/toniot-datasets. 

  36. 10.1016/B978-0-12-816176-0.00026-0 DiPietro, R., and Hager, G.D. (2020). Deep learning: RNNs and LSTM. Handbook of Medical Image Computing and Computer Assisted Intervention, Elsevier. 

  37. LeCun Deep learning Nature 2015 10.1038/nature14539 521 436 

  38. Alsaedi TON_IoT telemetry dataset: A new generation dataset of IoT and IIoT for data-driven Intrusion Detection Systems IEEE Access 2020 10.1109/ACCESS.2020.3022862 8 165130 

  39. Jia Flowguard: An intelligent edge defense mechanism against IoT DDoS attacks IEEE Internet Things J. 2020 10.1109/JIOT.2020.2993782 7 9552 

  40. Li Rtvd: A real-time volumetric detection scheme for ddos in the internet of things IEEE Access 2020 10.1109/ACCESS.2020.2974293 8 36191 

  41. Carvalho Near real-time security system applied to SDN environments in IoT networks using convolutional neural network Comput. Electr. Eng. 2020 10.1016/j.compeleceng.2020.106738 86 106738 

  42. Alamri Bandwidth Control Mechanism and Extreme Gradient Boosting Algorithm for Protecting Software-Defined Networks Against DDoS Attacks IEEE Access 2020 10.1109/ACCESS.2020.3033942 8 194269 

  43. 10.1109/ICESS49830.2020.9301591 Zhang, Y., Xu, J., Wang, Z., Geng, R., Choo, K.K.R., Pérez-Díaz, J.A., and Zhu, D. (2020, January 10-11). Efficient and Intelligent Attack Detection in Software Defined IoT Networks. Proceedings of the 2020 IEEE International Conference on Embedded Software and Systems (ICESS), Shanghai, China. 

  44. Kumar TP2SF: A Trustworthy Privacy-Preserving Secured Framework for sustainable smart cities by leveraging blockchain and machine learning J. Syst. Archit. 2021 10.1016/j.sysarc.2020.101954 115 101954 

  45. 10.1109/TNSM.2021.3075503 Pontes, C., Souza, M., Gondim, J., Bishop, M., and Marotta, M. (2021). A new method for flow-based network intrusion detection using the inverse Potts model. IEEE Trans. Netw. Serv. Manag. 

  46. Assis A GRU deep learning system against attacks in software defined networks J. Netw. Comput. Appl. 2021 10.1016/j.jnca.2020.102942 177 102942 

  47. Kumar An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks Comput. Commun. 2021 10.1016/j.comcom.2020.12.003 166 110 

  48. 10.3390/electronics10080918 Javeed, D., Gao, T., and Khan, M.T. (2021). SDN-Enabled Hybrid DL-Driven Framework for the Detection of Emerging Cyber Threats in IoT. Electronics, 10. 

  49. 10.1109/TCSS.2021.3063538 Nie, L., Wu, Y., Wang, X., Guo, L., Wang, G., Gao, X., and Li, S. (2021). Intrusion Detection for Secure Social Internet of Things Based on Collaborative Edge Computing: A Generative Adversarial Network-Based Approach. IEEE Trans. Comput. Soc. Syst. 

  50. Kumar Sp2f: A secured privacy-preserving framework for smart agricultural unmanned aerial vehicles Comput. Netw. 2021 10.1016/j.comnet.2021.107819 187 107819 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로