$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Numerical parametric study on the burner arrangement design for hydrogen production in a steam methane reformer 원문보기

International journal of energy research, v.45 no.11, 2021년, pp.16006 - 16026  

Rohini, Ajith Krishnan (School of Mechanical Engineering, Kookmin University, Seoul, South Korea) ,  Choi, Seok Hyun (ENGLINK, Bucheon, South Korea) ,  Lee, Hee Joon (School of Mechanical Engineering, Kookmin University, Seoul, South Korea)

Abstract AI-Helper 아이콘AI-Helper

SummaryA numerical parametric study on the burner arrangement design for a steam methane reforming reactor was conducted under three burner configurations: a single co‐axial inside burner (SCIB), a single top burner (STB), and multiple top burners (MTB). The burner combustion gas inlet angle w...

주제어

참고문헌 (40)

  1. Crabtree RH . Hydrogen storage in liquid organic heterocycles . Energ Environ Sci . 2008 ; 1 ( 1 ): 134 ‐ 138 . 

  2. Preuster P , Papp C , Wasserscheid P . Liquid organic hydrogen carriers (LOHCs): toward a hydrogen‐free hydrogen economy . Account Chem Res . 2017 ; 50 ( 1 ): 74 ‐ 85 . 

  3. Niermann M , Timmerberg S , Drünert S , Kaltschmitt M . Liquid organic hydrogen carriers and alternatives for international transport of renewable hydrogen . Renew Sustain Energy Rev . 2021 ; 135 : 110171 . 

  4. Modisha PM , Ouma CN , Garidzirai R , Wasserscheid P , Bessarabov D . The prospect of hydrogen storage using liquid organic hydrogen carriers . Energy Fuels . 2019 ; 33 ( 4 ): 2778 ‐ 2796 . 

  5. Barelli L , Bidini G , Gallorini F , Servili S . Hydrogen production through sorption‐enhanced steam methane reforming and membrane technology: a review . Energy . 2008 ; 33 ( 4 ): 554 ‐ 570 . 

  6. Tran A , Aguirre A , Durand H , Crose M , Christofides PD . CFD modeling of a industrial‐scale steam methane reforming furnace . Chem Eng Sci . 2017 ; 171 : 576 ‐ 598 . 

  7. Hong SK , Dong SK , Han JO , Lee JS , Lee YC . Numerical study of effect of operating and design parameters for design of steam reforming reactor . Energy . 2013 ; 61 : 410 ‐ 418 . 

  8. Lee S , Bae J , Lim S , Park J . Improved configuration of supported nickel catalysts in a steam reformer for effective hydrogen production from methane . J Power Sources . 2008 ; 180 ( 1 ): 506 ‐ 515 . 

  9. Lao L , Aguirre A , Tran A , Wu Z , Durand H , Christofidesa PD . CFD modeling and control of a steam methane reforming reactor . Chem Eng Sci . 2016 ; 148 : 78 ‐ 92 . 

  10. Tran A , Aguirre A , Crose M , Durand H , Christofides PD . Temperature balancing in steam methane reforming furnace via an integrated CFD/data‐based optimization approach . Comput Chem Eng. 2017 ; 104 : 185 ‐ 200 . 

  11. Kumar A , Baldea M , Edgar TF . A physics‐based model for industrial steam‐methane reformer optimization with non‐uniform temperature field . ComputChemEng . 2017 ; 105 : 224 ‐ 236 . 

  12. Förster T , Voloshchuk Y , Richter A , Meyer B . 3D numerical study of the performance of different burner concepts for the high‐pressure non‐catalytic natural gas reforming based on the Freiberg semi‐industrial test facility HP POX . Fuel . 2017 ; 203 : 954 ‐ 963 . 

  13. Ngo SI , Lim YI , Kim W , Seo DJ , Yoon WL . Computational fluid dynamics and experimental validation of a compact steam methane reformer for hydrogen production from natural gas . Appl Energ . 2019 ; 236 : 340 ‐ 353 . 

  14. Nguyen DD , Ngo SI , Lim YI , et al. Optimal design of a sleeve‐type steam methane reforming reactor for hydrogen production from natural gas . Int J Hydrogen Energy . 2019 ; 44 ( 3 ): 1973 ‐ 1987 . 

  15. Pashchenko D . Experimental investigation of synthesis gas production by methane reforming with flue gas over a NiO‐Al 2 O 3 catalyst: reforming characteristics and pressure drop . Int J Hydrogen Energy . 2019 ; 44 ( 14 ): 7073 ‐ 7082 . 

  16. Pashchenko D . Numerical study of steam methane reforming over a pre‐heated Ni‐based catalyst with detailed fluid dynamics . Fuel . 2019 ; 236 : 686 ‐ 694 . 

  17. Pashchenko D . Comparative analysis of hydrogen/air combustion CFD‐modeling for 3D and 2D computational domain of micro‐cylindrical combustor . Int J Hydrogen Energy . 2017 ; 42 ( 49 ): 29545 ‐ 29556 . 

  18. Pashchenko D . Effect of the geometric dimensionality of computational domain on the results of CFD‐modeling of steam methane reforming . Int J Hydrogen Energy . 2018 ; 43 ( 18 ): 8662 ‐ 8673 . 

  19. Pashchenko D . Thermodynamic equilibrium analysis of steam methane reforming based on a conjugate solution of material balance and law action mass equations with the detailed energy balance . Int J Energ Res . 2020 ; 44 ( 1 ): 438 ‐ 447 . 

  20. Fernandez JR , Abanades JC , Murillo R . Modeling of sorption enhanced steam methane reforming in an adiabatic fixed bed reactor . Chem Eng Sci . 2012 ; 84 : 1 ‐ 11 . 

  21. Fernandez JR , Abanades JC , Grasa G . Modeling of sorption enhanced steam methane reforming—part II: simulation within a novel Ca/Cu chemical loop process for hydrogen production . Chem Eng Sci . 2012 ; 84 : 12 ‐ 20 . 

  22. Jakobsen JP , Halmøy E . Reactor modeling of sorption enhanced steam methane reforming . Enrgy Proced . 2009 ; 1 ( 1 ): 725 ‐ 732 . 

  23. Reijers HTJ , Boon J , Elzinga GD , Cobden PD , Haije WG , van den Brink RW . Modeling study of the sorption‐enhanced reaction process for CO 2 capture. I. Model development and validation . Ind Eng Chem Res . 2009 ; 48 ( 15 ): 6966 ‐ 6974 . 

  24. Li ZS , Cai NS . Modeling of multiple cycles for sorption‐enhanced steam methane reforming and sorbent regeneration in fixed bed reactor . Energ Fuel . 2007 ; 21 ( 5 ): 2909 ‐ 2918 . 

  25. Neni A , Benguerba Y , Balsamo M , Erto A , Ernst B , Benachour D . Numerical study of sorption‐enhanced methane steam reforming over Ni/Al 2 O 3 catalyst in a fixed‐bed reactor . Int J Heat Mass Tran . 2021 ; 165 : 120635 . 

  26. ANSYS . Fluent 16.0 Users' Manual and Documentation . 

  27. Jeong A , Shin D , Baek SM , Nam JH . Effectiveness factor correlations from simulations of washcoat nickel catalyst layers for small‐scale steam methane reforming applications . Int J Hydrogen Energy . 2018 ; 43 ( 32 ): 15398 ‐ 15411 . 

  28. Xu J , Froment GF . Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics . AIChE J . 1989 ; 35 ( 1 ): 88 ‐ 96 . 

  29. Yapıcı H , Kayataş N , Albayrak B , Baştürk G . Numerical calculation of local entropy generation in a methane–air burner . Energ Convers Manage . 2005 ; 46 ( 11–12 ): 1885 ‐ 1919 . 

  30. Latham DA , McAuley KB , Peppley BA , Raybold TM . Mathematical modeling of an industrial steam‐methane reformer for on‐line deployment . Fuel Process Technol . 2011 ; 92 ( 8 ): 1574 ‐ 1586 . 

  31. Roychowdhury S , Sundararajan T , Das SK . Conjugate heat transfer studies on steam reforming of ethanol in micro‐channel systems . Int J Heat Mass Tran . 2019 ; 139 : 660 ‐ 674 . 

  32. Bartolucci L , Cordiner S , Mulone V , Rocco V . Natural gas partially stratified lean combustion: analysis of the enhancing mechanisms into a constant volume combustion chamber . Fuel . 2018 ; 211 : 737 ‐ 753 . 

  33. Katheria S , Kunzru D , Deo G . Kinetics of steam reforming of methane on Rh–Ni/MgAl 2 O 4 catalyst . React Kinet Mech Cat . 2020 ; 2020 : 1 ‐ 11 . 

  34. Liu JA . Kinetics, Catalysis and Mechanism of Methane Steam Reforming . Massachusetts : Worcester Polytechnic Institute ; 2006 . 

  35. Barrio VL , Schaub G , Rohde M , et al. Reactor modeling to simulate catalytic partial oxidation and steam reforming of methane. Comparison of temperature profiles and strategies for hot spot minimization . Int J Hydrogen Energy . 2007 ; 32 ( 10‐11 ): 1421 ‐ 1428 . 

  36. De‐Souza M , Zanin GM , Moraes FF . Parametric study of hydrogen production from ethanol steam reforming in a membrane microreactor . Braz J Chem Eng . 2013 ; 30 ( 2 ): 355 ‐ 367 . 

  37. Yu W , Ohmori T , Yamamoto T , et al. Simulation of a porous ceramic membrane reactor for hydrogen production . Int J Hydrogen Energy . 2005 ; 30 ( 10 ): 1071 ‐ 1079 . 

  38. Yeh CL . Numerical investigation of the effects of steam mole fraction and the inlet velocity of reforming reactants on an industrial‐scale steam methane reformer . Energies . 2018 ; 11 ( 8 ): 2082 . 

  39. Gallucci F , Paturzo L , Famà A , Basile A . Experimental study of the methane steam reforming reaction in a dense Pd/ag membrane reactor . Ind Eng Chem Res . 2004 ; 43 ( 4 ): 928 ‐ 933 . 

  40. Katz A , Sankaran V . Mesh quality effects on the accuracy of CFD solutions on unstructured meshes . J Comput Phys . 2011 ; 230 ( 20 ): 7670 ‐ 7686 . 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로