$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Receptor-Arrestin Interactions: The GPCR Perspective 원문보기

Biomolecules, v.11 no.2, 2021년, pp.218 -   

Seyedabadi, Mohammad (Department of Toxicology & Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48471-93698, Iran) ,  Gharghabi, Mehdi (m.seyedabadi@mazums.ac.ir) ,  Gurevich, Eugenia V. (Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA) ,  Gurevich, Vsevolod V. (mehdi.gharghabi@osumc.edu)

Abstract AI-Helper 아이콘AI-Helper

Arrestins are a small family of four proteins in most vertebrates that bind hundreds of different G protein-coupled receptors (GPCRs). Arrestin binding to a GPCR has at least three functions: precluding further receptor coupling to G proteins, facilitating receptor internalization, and initiating di...

주제어

참고문헌 (163)

  1. 1. Gurevich E.V. Tesmer J.J. Mushegian A. Gurevich V.V. G protein-coupled receptor kinases: More than just kinases and not only for GPCRs Pharmacol. Ther. 2012 133 40 46 10.1016/j.pharmthera.2011.08.001 21903131 

  2. 2. Gurevich V.V. Gurevich E.V. The molecular acrobatics of arrestin activation Trends Pharmacol. Sci. 2004 25 105 111 10.1016/j.tips.2003.12.008 15102497 

  3. 3. Carman C.V. Benovic J.L. G-protein-coupled receptors: Turn-ons and turn-offs Curr. Opin. Neurobiol. 1998 8 335 344 10.1016/S0959-4388(98)80058-5 9687355 

  4. 4. Xiao K. McClatchy D.B. Shukla A.K. Zhao Y. Chen M. Shenoy S.K. Yates J.R. Lefkowitz R.J. Functional specialization of beta-arrestin interactions revealed by proteomic analysis Proc. Natl. Acad. Sci. USA 2007 104 12011 12016 10.1073/pnas.0704849104 17620599 

  5. 5. Gurevich E.V. Gurevich V.V. Arrestins are ubiquitous regulators of cellular signaling pathways Genome Biol. 2006 7 236 10.1186/gb-2006-7-9-236 17020596 

  6. 6. Peterson Y.K. Luttrell L.M. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling Pharmacol. Rev. 2017 69 256 297 10.1124/pr.116.013367 28626043 

  7. 7. Lefkowitz R.J. Rajagopal K. Whalen E.J. New roles for beta-arrestins in cell signaling: Not just for seven-transmembrane receptors Mol. Cell 2006 24 643 652 10.1016/j.molcel.2006.11.007 17157248 

  8. 8. Khedmat S. Seyedabadi M. Ghahremani M.H. Ostad S.N. Cyclooxygenase 2 plays a role in Emdogain-induced proliferation J. Periodontal Res. 2011 46 67 73 10.1111/j.1600-0765.2010.01313.x 20860590 

  9. 9. Seyedabadi M. Rahimian R. Ghia J.E. The role of alpha7 nicotinic acetylcholine receptors in inflammatory bowel disease: Involvement of different cellular pathways Expert Opin. Ther. Targets 2018 22 161 176 10.1080/14728222.2018.1420166 29298542 

  10. 10. Gurevich V.V. Gurevich E.V. Custom-designed proteins as novel therapeutic tools? The case of arrestins Expert Rev. Mol. Med. 2010 12 e13 10.1017/S1462399410001444 20412604 

  11. 11. Chen Q. Iverson T.M. Gurevich V.V. Structural Basis of Arrestin-Dependent Signal Transduction Trends Biochem. Sci. 2018 43 412 423 10.1016/j.tibs.2018.03.005 29636212 

  12. 12. Gurevich V.V. Gurevich E.V. The new face of active receptor bound arrestin attracts new partners Structure 2003 11 1037 1042 10.1016/S0969-2126(03)00184-9 12962621 

  13. 13. Hauser A.S. Attwood M.M. Rask-Andersen M. Schioth H.B. Gloriam D.E. Trends in GPCR drug discovery: New agents, targets and indications Nat. Rev. Drug Discov. 2017 16 829 842 10.1038/nrd.2017.178 29075003 

  14. 14. Fredriksson R. Lagerstrom M.C. Lundin L.G. Schioth H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints Mol. Pharmacol. 2003 63 1256 1272 10.1124/mol.63.6.1256 12761335 

  15. 15. Indrischek H. Prohaska S.J. Gurevich V.V. Gurevich E.V. Stadler P.F. Uncovering missing pieces: Duplication and deletion history of arrestins in deuterostomes BMC Evol. Biol. 2017 17 163 10.1186/s12862-017-1001-4 28683816 

  16. 16. Hirsch J.A. Schubert C. Gurevich V.V. Sigler P.B. The 2.8 A crystal structure of visual arrestin: A model for arrestin’s regulation Cell 1999 97 257 269 10.1016/S0092-8674(00)80735-7 10219246 

  17. 17. Han M. Gurevich V.V. Vishnivetskiy S.A. Sigler P.B. Schubert C. Crystal structure of beta-arrestin at 1.9 A: Possible mechanism of receptor binding and membrane translocation Structure 2001 9 869 880 10.1016/S0969-2126(01)00644-X 11566136 

  18. 18. Zhan X. Gimenez L.E. Gurevich V.V. Spiller B.W. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual arrestins J. Mol. Biol. 2011 25 751.18 10.1016/j.jmb.2010.12.034 

  19. 19. Zhan X. Stoy H. Kaoud T.S. Perry N.A. Chen Q. Perez A. Els-Heindl S. Slagis J.V. Iverson T.M. Beck-Sickinger A.G. Peptide mini-scaffold facilitates JNK3 activation in cells Sci. Rep. 2016 6 21025 10.1038/srep21025 26868142 

  20. 20. Sutton R.B. Vishnivetskiy S.A. Robert J. Hanson S.M. Raman D. Knox B.E. Kono M. Navarro J. Gurevich V.V. Crystal Structure of Cone Arrestin at 2.3A: Evolution of Receptor Specificity J. Mol. Biol. 2005 354 1069 1080 10.1016/j.jmb.2005.10.023 16289201 

  21. 21. Vishnivetskiy S.A. Hirsch J.A. Velez M.-G. Gurevich Y.V. Gurevich V.V. Transition of arrestin in the active receptor-binding state requires an extended interdomain hinge J. Biol. Chem. 2002 277 43961 43968 10.1074/jbc.M206951200 12215448 

  22. 22. Hanson S.M. Cleghorn W.M. Francis D.J. Vishnivetskiy S.A. Raman D. Song X. Nair K.S. Slepak V.Z. Klug C.S. Gurevich V.V. Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity J. Mol. Biol. 2007 368 375 387 10.1016/j.jmb.2007.02.053 17359998 

  23. 23. Kovoor A. Celver J. Abdryashitov R.I. Chavkin C. Gurevich V.V. Targeted construction of phosphorylation-independent b-arrestin mutants with constitutive activity in cells J. Biol. Chem. 1999 274 6831 6834 10.1074/jbc.274.11.6831 10066734 

  24. 24. Celver J. Vishnivetskiy S.A. Chavkin C. Gurevich V.V. Conservation of the phosphate-sensitive elements in the arrestin family of proteins J. Biol. Chem. 2002 277 9043 9048 10.1074/jbc.M107400200 11782458 

  25. 25. Gimenez L.E. Kook S. Vishnivetskiy S.A. Ahmed M.R. Gurevich E.V. Gurevich V.V. Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors J. Biol. Chem. 2012 287 9028 9040 10.1074/jbc.M111.311803 22275358 

  26. 26. Zhan X. Gimenez L.E. Gurevich V.V. Spiller B.W. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes J. Mol. Biol. 2011 406 467 478 10.1016/j.jmb.2010.12.034 21215759 

  27. 27. Chen Q. Perry N.A. Vishnivetskiy S.A. Berndt S. Gilbert N.C. Zhuo Y. Singh P.K. Tholen J. Ohi M.D. Gurevich E.V. Structural basis of arrestin-3 activation and signaling Nat. Commun. 2017 8 1427 10.1038/s41467-017-01218-8 29127291 

  28. 28. Vishnivetskiy S.A. Paz C.L. Schubert C. Hirsch J.A. Sigler P.B. Gurevich V.V. How does arrestin respond to the phosphorylated state of rhodopsin? J. Biol. Chem. 1999 274 11451 11454 10.1074/jbc.274.17.11451 10206946 

  29. 29. Gurevich V.V. Pals-Rylaarsdam R. Benovic J.L. Hosey M.M. Onorato J.J. Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity J. Biol. Chem. 1997 272 28849 28852 10.1074/jbc.272.46.28849 9360951 

  30. 30. Pan L. Gurevich E.V. Gurevich V.V. The nature of the arrestin x receptor complex determines the ultimate fate of the internalized receptor J. Biol. Chem. 2003 278 11623 11632 10.1074/jbc.M209532200 12525498 

  31. 31. Vishnivetskiy S.A. Zheng C. May M.B. Karnam P.C. Gurevich E.V. Gurevich V.V. Lysine in the lariat loop of arrestins does not serve as phosphate sensor J. Neurochem. 2020 10.1111/jnc.15110 

  32. 32. Yin W. Li Z. Jin M. Yin Y.L. de Waal P.W. Pal K. Yin Y. Gao X. He Y. Gao J. A complex structure of arrestin-2 bound to a G protein-coupled receptor Cell Res. 2019 29 971 983 10.1038/s41422-019-0256-2 31776446 

  33. 33. Staus D.P. Hu H. Robertson M.J. Kleinhenz A.L.W. Wingler L.M. Capel W.D. Latorraca N.R. Lefkowitz R.J. Skiniotis G. Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc Nature 2020 579 297 302 10.1038/s41586-020-1954-0 31945772 

  34. 34. Huang W. Masureel M. Qianhui Q. Janetzko J. Inoue A. Kato H.E. Robertson M.J. Nguyen K.C. Glenn J.S. Skiniotis G. Structure of the neurotensin receptor 1 in complex with β-arrestin 1 Nature 2020 579 303 308 10.1038/s41586-020-1953-1 31945771 

  35. 35. Milano S.K. Pace H.C. Kim Y.M. Brenner C. Benovic J.L. Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis Biochemistry 2002 41 3321 3328 10.1021/bi015905j 11876640 

  36. 36. Vishnivetskiy S.A. Schubert C. Climaco G.C. Gurevich Y.V. Velez M.-G. Gurevich V.V. An additional phosphate-binding element in arrestin molecule: Implications for the mechanism of arrestin activation J. Biol. Chem. 2000 275 41049 41057 10.1074/jbc.M007159200 11024026 

  37. 37. Zhuo Y. Vishnivetskiy S.A. Zhan X. Gurevich V.V. Klug C.S. Identification of receptor binding-induced conformational changes in non-visual arrestins J. Biol. Chem. 2014 289 20991 21002 10.1074/jbc.M114.560680 24867953 

  38. 38. Vishnivetskiy S.A. Francis D.J. Van Eps N. Kim M. Hanson S.M. Klug C.S. Hubbell W.L. Gurevich V.V. The role of arrestin alpha-helix I in receptor binding J. Mol. Biol. 2010 395 42 54 10.1016/j.jmb.2009.10.058 19883657 

  39. 39. Hanson S.M. Francis D.J. Vishnivetskiy S.A. Kolobova E.A. Hubbell W.L. Klug C.S. Gurevich V.V. Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin Proc. Natl. Acad. Sci. USA 2006 103 4900 4905 10.1073/pnas.0600733103 16547131 

  40. 40. Kang Y. Zhou X.E. Gao X. He Y. Liu W. Ishchenko A. Barty A. White T.A. Yefanov O. Han G.W. Crystal structure of rhodopsin bound to arrestin determined by femtosecond X-ray laser Nature 2015 523 561 567 10.1038/nature14656 26200343 

  41. 41. Lally C.C. Bauer B. Selent J. Sommer M.E. C-edge loops of arrestin function as a membrane anchor Nat. Commun. 2017 8 14258 10.1038/ncomms14258 28220785 

  42. 42. Modzelewska A. Filipek S. Palczewski K. Park P.S. Arrestin interaction with rhodopsin: Conceptual models Cell Biochem. Biophys. 2006 46 1 15 10.1385/CBB:46:1:1 16943619 

  43. 43. Zhou X.E. He Y. de Waal P.W. Gao X. Kang Y. Van Eps N. Yin Y. Pal K. Goswami D. White T.A. Identification of Phosphorylation Codes for Arrestin Recruitment by G protein-Coupled Receptors Cell 2017 170 457 469 10.1016/j.cell.2017.07.002 28753425 

  44. 44. Min K. Yoon H.J. Park J.Y. Baidya M. Dwivedi-Agnihotri H. Maharana J. Chaturvedi M. Chung K.Y. Shukla A.K. Lee H.H. Crystal Structure of β-Arrestin 2 in Complex with CXCR7 Phosphopeptide Structure 2020 28 1014 1023.e4 10.1016/j.str.2020.06.002 32579945 

  45. 45. Granzin J. Stadler A. Cousin A. Schlesinger R. Batra-Safferling R. Structural evidence for the role of polar core residue Arg175 in arrestin activation Sci. Rep. 2015 5 15808 10.1038/srep15808 26510463 

  46. 46. Granzin J. Cousin A. Weirauch M. Schlesinger R. Buldt G. Batra-Safferling R. Crystal structure of p44, a constitutively active splice variant of visual arrestin J. Mol. Biol. 2012 416 611 618 10.1016/j.jmb.2012.01.028 22306737 

  47. 47. Shukla A.K. Manglik A. Kruse A.C. Xiao K. Reis R.I. Tseng W.C. Staus D.P. Hilger D. Uysal S. Huang L.Y. Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide Nature 2013 497 137 141 10.1038/nature12120 23604254 

  48. 48. Kim Y.J. Hofmann K.P. Ernst O.P. Scheerer P. Choe H.W. Sommer M.E. Crystal structure of pre-activated arrestin p44 Nature 2013 497 142 146 10.1038/nature12133 23604253 

  49. 49. Lee Y. Warne T. Nehme R. Pandey S. Dwivedi-Agnihotri H. Chaturvedi M. Edwards P.C. Garcia-Nafria J. Leslie A.G.W. Shukla A.K. Molecular basis of β-arrestin coupling to formoterol-bound β(1)-adrenoceptor Nature 2020 583 862 866 10.1038/s41586-020-2419-1 32555462 

  50. 50. Kim J. Ahn S. Ren X.-R. Whalen E.J. Reiter E. Wei H. Lefkowitz R.J. Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling Proc. Nat. Acad. Sci. USA 2005 102 1442 1447 10.1073/pnas.0409532102 15671181 

  51. 51. Ren X.R. Reiter E. Ahn S. Kim J. Chen W. Lefkowitz R.J. Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor Proc. Nat. Acad. Sci. USA 2005 102 1448 1453 10.1073/pnas.0409534102 15671180 

  52. 52. Choi M. Staus D.P. Wingler L.M. Ahn S. Pani B. Capel W.D. Lefkowitz R.J. G protein-coupled receptor kinases (GRKs) orchestrate biased agonism at the β2-adrenergic receptor Sci. Signal. 2018 11 eaar7084 10.1126/scisignal.aar7084 30131371 

  53. 53. Tobin A.B. Butcher A.J. Kong K.C. Location, location, location...site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling Trends Pharmacol. Sci. 2008 29 413 420 10.1016/j.tips.2008.05.006 18606460 

  54. 54. Kaya A.I. Perry N.A. Gurevich V.V. Iverson T.M. Phosphorylation barcode-dependent signal bias of the dopamine D1 receptor Proc. Nat. Acad. Sci. USA 2020 117 14139 14149 10.1073/pnas.1918736117 32503917 

  55. 55. Gimenez L.E. Vishnivetskiy S.A. Baameur F. Gurevich V.V. Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins J. Biol. Chem. 2012 287 29495 29505 10.1074/jbc.M112.366674 22787152 

  56. 56. Gimenez L.E. Babilon S. Wanka L. Beck-Sickinger A.G. Gurevich V.V. Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes Cell. Signal. 2014 26 1523 1531 10.1016/j.cellsig.2014.03.019 24686081 

  57. 57. Nguyen A.H. Thomsen A.R.B. Cahill T.J. Huang R. Huang L.-Y. Marcink T. Clarke O.B. Heissel S. Masoudi A. Ben-Hail D. Structure of an endosomal signaling GPCR?G protein?β-arrestin megacomplex Nat. Struct. Mol. Biol. 2019 26 1123 1131 10.1038/s41594-019-0330-y 31740855 

  58. 58. Gurevich V.V. Benovic J.L. Cell-free expression of visual arrestin. Truncation mutagenesis identifies multiple domains involved in rhodopsin interaction J. Biol. Chem. 1992 267 21919 21923 10.1016/S0021-9258(19)36700-6 1400502 

  59. 59. Gurevich V.V. Benovic J.L. Visual arrestin interaction with rhodopsin: Sequential multisite binding ensures strict selectivity towards light-activated phosphorylated rhodopsin J. Biol. Chem. 1993 268 11628 11638 10.1016/S0021-9258(19)50248-4 8505295 

  60. 60. Krasel C. Bunemann M. Lorenz K. Lohse M.J. Beta-arrestin binding to the beta2-adrenergic receptor requires both receptor phosphorylation and receptor activation J. Biol. Chem. 2005 280 9528 9535 10.1074/jbc.M413078200 15634674 

  61. 61. Vaughan D.J. Millman E.E. Godines V. Friedman J. Tran T.M. Dai W. Knoll B.J. Clark R.B. Moore R.H. Role of the G protein-coupled receptor kinase site serine cluster in beta2-adrenergic receptor internalization, desensitization, and beta-arrestin translocation J. Biol. Chem. 2006 281 7684 7692 10.1074/jbc.M500328200 16407241 

  62. 62. Farrens D.L. Altenbach C. Yang K. Hubbell W.L. Khorana H.G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin Science 1996 274 768 770 10.1126/science.274.5288.768 8864113 

  63. 63. Weis W.I. Kobilka B.K. The Molecular Basis of G Protein-Coupled Receptor Activation Annu. Rev. Biochem. 2018 87 897 919 10.1146/annurev-biochem-060614-033910 29925258 

  64. 64. Rasmussen S.G. DeVree B.T. Zou Y. Kruse A.C. Chung K.Y. Kobilka T.S. Thian F.S. Chae P.S. Pardon E. Calinski D. Crystal structure of the β2 adrenergic receptor-Gs protein complex Nature 2011 477 549 555 10.1038/nature10361 21772288 

  65. 65. Koehl A. Hu H. Maeda S. Zhang Y. Qu Q. Paggi J.M. Latorraca N.R. Hilger D. Dawson R. Matile H. Structure of the μ-opioid receptor-Gi protein complex Nature 2018 558 547 552 10.1038/s41586-018-0219-7 29899455 

  66. 66. Liang Y.L. Khoshouei M. Radjainia M. Zhang Y. Glukhova A. Tarrasch J. Thal D.M. Furness S.G.B. Christopoulos G. Coudrat T. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex Nature 2017 546 118 123 10.1038/nature22327 28437792 

  67. 67. Zhang Y. Sun B. Feng D. Hu H. Chu M. Qu Q. Tarrasch J.T. Li S. Kobilka T.S. Kobilka B.K. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein Nature 2017 546 248 253 10.1038/nature22394 28538729 

  68. 68. Kang Y. Kuybeda O. de Waal P.W. Mukherjee S. Van Eps N. Dutka P. Zhou X.E. Bartesaghi A. Erramilli S. Morizumi T. Cryo-EM structure of human rhodopsin bound to an inhibitory G protein Nature 2018 558 553 558 10.1038/s41586-018-0215-y 29899450 

  69. 69. Carpenter B. Nehme R. Warne T. Leslie A.G. Tate C.G. Structure of the adenosine A(2A) receptor bound to an engineered G protein Nature 2016 536 104 107 10.1038/nature18966 27462812 

  70. 70. Komolov K.E. Du Y. Duc N.M. Betz R.M. Rodrigues J.P.G.L.M. Leib R.D. Patra D. Skiniotis G. Adams C.M. Dror R.O. Structural and Functional Analysis of a β2-Adrenergic Receptor Complex with GRK5 Cell 2017 169 407 421 10.1016/j.cell.2017.03.047 28431242 

  71. 71. He Y. Gao X. Goswami D. Hou L. Pal K. Yin Y. Zhao G. Ernst O.P. Griffin P. Melcher K. Molecular assembly of rhodopsin with G protein-coupled receptor kinases Cell Res. 2017 27 728 747 10.1038/cr.2017.72 28524165 

  72. 72. Garcia-Nafria J. Nehme R. Edwards P.C. Tate C.G. Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go Nature 2018 558 620 623 10.1038/s41586-018-0241-9 29925951 

  73. 73. Haga K. Kruse A.C. Asada H. Yurugi-Kobayashi T. Shiroishi M. Zhang C. Weis W.I. Okada T. Kobilka B.K. Haga T. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist Nature 2012 482 547 551 10.1038/nature10753 22278061 

  74. 74. Maeda S. Qu Q. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes Science 2019 364 552 557 10.1126/science.aaw5188 31073061 

  75. 75. Ballesteros J.A. Weinstein H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors Methods in Neurosciences Elsevier Amsterdam, The Netherlands 1995 Volume 25 366 428 

  76. 76. Kruse A.C. Ring A.M. Manglik A. Hu J. Hu K. Eitel K. Hubner H. Pardon E. Valant C. Sexton P.M. Activation and allosteric modulation of a muscarinic acetylcholine receptor Nature 2013 504 101 106 10.1038/nature12735 24256733 

  77. 77. Ring A.M. Manglik A. Kruse A.C. Enos M.D. Weis W.I. Garcia K.C. Kobilka B.K. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody Nature 2013 502 575 579 10.1038/nature12572 24056936 

  78. 78. Deupi X. Edwards P. Singhal A. Nickle B. Oprian D. Schertler G. Standfuss J. Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II Proc. Natl. Acad. Sci. USA 2012 109 119 124 10.1073/pnas.1114089108 22198838 

  79. 79. Shenoy S.K. Drake M.T. Nelson C.D. Houtz D.A. Xiao K. Madabushi S. Reiter E. Premont R.T. Lichtarge O. Lefkowitz R.J. β-Arrestin-dependent, G Protein-independent ERK1/2 Activation by the β2 Adrenergic Receptor J. Biol. Chem. 2006 281 1261 1273 10.1074/jbc.M506576200 16280323 

  80. 80. Isogai S. Deupi X. Opitz C. Heydenreich F.M. Tsai C.-J. Brueckner F. Schertler G.F.X. Veprintsev D.B. Grzesiek S. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor Nature 2016 530 237 241 10.1038/nature16577 26840483 

  81. 81. McCorvy J.D. Butler K.V. Kelly B. Rechsteiner K. Karpiak J. Betz R.M. Kormos B.L. Shoichet B.K. Dror R.O. Jin J. Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs Nat. Chem. Biol. 2018 14 126 134 10.1038/nchembio.2527 29227473 

  82. 82. Seyedabadi M. Ostad S.N. Albert P.R. Dehpour A.R. Rahimian R. Ghazi-Khansari M. Ghahremani M.H. Ser/Thr residues at α3/β5 loop of Gαs are important in morphine-induced adenylyl cyclase sensitization but not mitogen-activated protein kinase phosphorylation FEBS J. 2012 279 650 660 10.1111/j.1742-4658.2011.08459.x 22177524 

  83. 83. Seyedabadi M. Ghahremani M.H. Albert P.R. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential Pharmacol. Ther. 2019 200 148 178 10.1016/j.pharmthera.2019.05.006 31075355 

  84. 84. Flock T. Hauser A.S. Lund N. Gloriam D.E. Balaji S. Babu M.M. Selectivity determinants of GPCR-G-protein binding Nature 2017 545 317 322 10.1038/nature22070 28489817 

  85. 85. Draper-Joyce C.J. Khoshouei M. Thal D.M. Liang Y.-L. Nguyen A.T.N. Furness S.G.B. Venugopal H. Baltos J.-A. Plitzko J.M. Danev R. Structure of the adenosine-bound human adenosine A1 receptor?Gi complex Nature 2018 558 559 563 10.1038/s41586-018-0236-6 29925945 

  86. 86. Rose A.S. Elgeti M. Zachariae U. Grubmuller H. Hofmann K.P. Scheerer P. Hildebrand P.W. Position of Transmembrane Helix 6 Determines Receptor G Protein Coupling Specificity J. Am. Chem. Soc. 2014 136 11244 11247 10.1021/ja5055109 25046433 

  87. 87. Garcia-Nafria J. Lee Y. Bai X. Carpenter B. Cryo-EM structure of the adenosine A(2A) receptor coupled to an engineered heterotrimeric G protein Elife 2018 7 e35946 10.7554/eLife.35946 29726815 

  88. 88. Gurevich V.V. Gurevich E.V. Biased GPCR signaling: Possible mechanisms and inherent limitations Pharmacol. Ther. 2020 211 107540 10.1016/j.pharmthera.2020.107540 32201315 

  89. 89. Warne T. Edwards P.C. Leslie A.G. Tate C.G. Crystal structures of a stabilized β1-adrenoceptor bound to the biased agonists bucindolol and carvedilol Structure 2012 20 841 849 10.1016/j.str.2012.03.014 22579251 

  90. 90. Wacker D. Wang C. Katritch V. Han G.W. Huang X.-P. Vardy E. McCorvy J.D. Jiang Y. Chu M. Siu F.Y. Structural Features for Functional Selectivity at Serotonin Receptors Science 2013 340 615 619 10.1126/science.1232808 23519215 

  91. 91. Che T. Majumdar S. Zaidi S.A. Ondachi P. McCorvy J.D. Wang S. Mosier P.D. Uprety R. Vardy E. Krumm B.E. Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor Cell 2018 172 55 67.e15 10.1016/j.cell.2017.12.011 29307491 

  92. 92. Bock A. Merten N. Schrage R. Dallanoce C. Batz J. Klockner J. Schmitz J. Matera C. Simon K. Kebig A. The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling Nat. Commun. 2012 3 1044 10.1038/ncomms2028 22948826 

  93. 93. Woo A.Y.-H. Jozwiak K. Toll L. Tanga M.J. Kozocas J.A. Jimenez L. Huang Y. Song Y. Plazinska A. Pajak K. Tyrosine 308 Is Necessary for Ligand-directed Gs Protein-biased Signaling of β2-Adrenoceptor J. Biol. Chem. 2014 289 19351 19363 10.1074/jbc.M114.558882 24831005 

  94. 94. Wingler L.M. Skiba M.A. McMahon C. Staus D.P. Kleinhenz A.L.W. Suomivuori C.M. Latorraca N.R. Dror R.O. Lefkowitz R.J. Kruse A.C. Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR Science 2020 367 888 892 10.1126/science.aay9813 32079768 

  95. 95. Fenalti G. Giguere P.M. Katritch V. Huang X.P. Thompson A.A. Cherezov V. Roth B.L. Stevens R.C. Molecular control of δ-opioid receptor signalling Nature 2014 506 191 196 10.1038/nature12944 24413399 

  96. 96. Steen A. Thiele S. Guo D. Hansen L.S. Frimurer T.M. Rosenkilde M.M. Biased and constitutive signaling in the CC-chemokine receptor CCR5 by manipulating the interface between transmembrane helices 6 and 7 J. Biol. Chem. 2013 288 12511 12521 10.1074/jbc.M112.449587 23493400 

  97. 97. Valentin-Hansen L. Frimurer T.M. Mokrosinski J. Holliday N.D. Schwartz T.W. Biased Gs versus Gq proteins and β-arrestin signaling in the NK1 receptor determined by interactions in the water hydrogen bond network J. Biol. Chem. 2015 290 24495 24508 10.1074/jbc.M115.641944 26269596 

  98. 98. Pulvermuller A. Schroder K. Fischer T. Hofmann K.P. Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin J. Biol. Chem. 2000 275 37679 37685 10969086 

  99. 99. Zheng C. Tholen J. Gurevich V.V. Critical role of the finger loop in arrestin binding to the receptors PLoS ONE 2019 14 e0213792 30875392 

  100. 100. Vishnivetskiy S.A. Huh E.K. Gurevich E.V. Gurevich V.V. The finger loop as an activation sensor in arrestin J. Neurochem. 2020 10.1111/jnc.15232 

  101. 101. Raman D. Osawa S. Gurevich V.V. Weiss E.R. The interaction with the cytoplasmic loops of rhodopsin plays a crucial role in arrestin activation and binding J. Neurochem. 2003 84 1040 1050 10.1046/j.1471-4159.2003.01598.x 12603828 

  102. 102. Raman D. Osawa S. Weiss E.R. Binding of arrestin to cytoplasmic loop mutants of bovine rhodopsin Biochemistry 1999 38 5117 5123 10.1021/bi9824588 10213616 

  103. 103. Bottke T. Ernicke S. Serfling R. Ihling C. Burda E. Gurevich V.V. Sinz A. Coin I. Exploring GPCR-arrestin interfaces with genetically encoded crosslinkers EMBO Rep. 2020 21 e50437 10.15252/embr.202050437 32929862 

  104. 104. Kim M. Vishnivetskiy S.A. Van Eps N. Alexander N.S. Cleghorn W.M. Zhan X. Hanson S.M. Morizumi T. Ernst O.P. Meiler J. Conformation of receptor-bound visual arrestin Proc. Nat. Acad. Sci. USA 2012 109 18407 18412 10.1073/pnas.1216304109 23091036 

  105. 105. Wei H. Ahn S. Shenoy S.K. Karnik S.S. Hunyady L. Luttrell L.M. Lefkowitz R.J. Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2 Proc. Natl. Acad. Sci. USA 2003 100 10782 10787 10.1073/pnas.1834556100 12949261 

  106. 106. Pietraszewska-Bogiel A. Joosen L. Chertkova A.O. Goedhart J. Not So Dry After All: DRY Mutants of the AT1A Receptor and H1 Receptor Can Induce G-Protein-Dependent Signaling ACS Omega 2020 5 2648 2659 10.1021/acsomega.9b03146 32095688 

  107. 107. Kim H.R. Xu J. Maeda S. Duc N.M. Ahn D. Du Y. Chung K.Y. Structural mechanism underlying primary and secondary coupling between GPCRs and the Gi/o family Nat. Commun. 2020 11 3160 10.1038/s41467-020-16975-2 32572026 

  108. 108. Pals-Rylaarsdam R. Gurevich V.V. Lee K.B. Ptasienski J. Benovic J.L. Hosey M.M. Internalization of the m2 muscarinic acetylcholine receptor: Arrestin-independent and -dependent pathways J. Biol. Chem. 1997 272 23682 23689 10.1074/jbc.272.38.23682 9295310 

  109. 109. Lee K.B. Ptasienski J.A. Pals-Rylaarsdam R. Gurevich V.V. Hosey M.M. Arrestin binding to the M2 muscarinic acetylcholine receptor is precluded by an inhibitory element in the third intracellular loop of the receptor J. Biol. Chem. 2000 275 9284 9289 10.1074/jbc.275.13.9284 10734068 

  110. 110. Kirchberg K. Kim T.Y. Moller M. Skegro D. Dasara Raju G. Granzin J. Buldt G. Schlesinger R. Alexiev U. Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process Proc. Natl. Acad. Sci. USA 2011 108 18690 18695 10.1073/pnas.1015461108 22039220 

  111. 111. Rahmeh R. Damian M. Cottet M. Orcel H. Mendre C. Durroux T. Sharma K.S. Durand G. Pucci B. Trinquet E. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy Proc. Natl. Acad. Sci. USA 2012 109 6733 6738 10.1073/pnas.1201093109 22493271 

  112. 112. Liu J.J. Horst R. Katritch V. Stevens R.C. Wuthrich K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR Science 2012 335 1106 1110 10.1126/science.1215802 22267580 

  113. 113. Yang H.-S. Sun N. Zhao X. Kim H.R. Park H.-J. Kim K.-M. Chung K.Y. Role of Helix 8 in Dopamine Receptor Signaling Biomol. Ther. (Seoul) 2019 27 514 521 10.4062/biomolther.2019.026 

  114. 114. Wilden U. Hall S.W. Kuhn H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments Proc. Natl. Acad. Sci. USA 1986 83 1174 1178 10.1073/pnas.83.5.1174 3006038 

  115. 115. Gurevich V.V. Dion S.B. Onorato J.J. Ptasienski J. Kim C.M. Sterne-Marr R. Hosey M.M. Benovic J.L. Arrestin interaction with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, b2-adrenergic, and m2 muscarinic cholinergic receptors J. Biol. Chem. 1995 270 720 731 10.1074/jbc.270.2.720 7822302 

  116. 116. Benovic J.L. Kuhn H. Weyand I. Codina J. Caron M.G. Lefkowitz R.J. Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: Potential role of an analog of the retinal protein arrestin (48-kDa protein) Proc. Nat. Acad. Sci. USA 1987 84 8879 8882 10.1073/pnas.84.24.8879 2827157 

  117. 117. Gurevich V.V. Benovic J.L. Visual arrestin binding to rhodopsin: Diverse functional roles of positively charged residues within the phosphorylation-recignition region of arrestin J. Biol. Chem. 1995 270 6010 6016 10.1074/jbc.270.11.6010 7890732 

  118. 118. Gurevich V.V. Benovic J.L. Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state Mol. Pharmacol. 1997 51 161 169 10.1124/mol.51.1.161 9016359 

  119. 119. Granzin J. Wilden U. Choe H.W. Labahn J. Krafft B. Buldt G. X-ray crystal structure of arrestin from bovine rod outer segments Nature 1998 391 918 921 10.1038/36147 9495348 

  120. 120. Palczewski K. Buczyłko J. Imami N.R. McDowell J.H. Hargrave P.A. Role of the carboxyl-terminal region of arrestin in binding to phosphorylated rhodopsin J. Biol. Chem. 1991 266 15334 15339 10.1016/S0021-9258(18)98620-5 1651326 

  121. 121. Zhuang T. Chen Q. Cho M.-K. Vishnivetskiy S.A. Iverson T.I. Gurevich V.V. Hubbell W.L. Involvement of Distinct Arrestin-1 Elements in Binding to Different Functional Forms of Rhodopsin Proc. Nat. Acad. Sci. USA 2013 110 942 947 10.1073/pnas.1215176110 23277586 

  122. 122. Zhuang T. Vishnivetskiy S.A. Gurevich V.V. Sanders C.R. Elucidation of IP6 and heparin interaction sites and conformational changes in arrestin-1 by solution NMR Biochemistry 2010 10473 10485 10.1021/bi101596g 21050017 

  123. 123. Gurevich V.V. The selectivity of visual arrestin for light-activated phosphorhodopsin is controlled by multiple nonredundant mechanisms J. Biol. Chem. 1998 273 15501 15506 10.1074/jbc.273.25.15501 9624137 

  124. 124. Mendez A. Burns M.E. Roca A. Lem J. Wu L.W. Simon M.I. Baylor D.A. Chen J. Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites Neuron 2000 28 153 164 10.1016/S0896-6273(00)00093-3 11086991 

  125. 125. Vishnivetskiy S.A. Raman D. Wei J. Kennedy M.J. Hurley J.B. Gurevich V.V. Regulation of arrestin binding by rhodopsin phosphorylation level J. Biol. Chem. 2007 282 32075 32083 10.1074/jbc.M706057200 17848565 

  126. 126. Azevedo A.W. Doan T. Moaven H. Sokal I. Baameur F. Vishnivetskiy S.A. Homan K.T. Tesmer J.J. Gurevich V.V. Chen J. C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor Elife 2015 4 e05981 10.7554/eLife.05981 

  127. 127. Mayer D. Damberger F.F. Samarasimhareddy M. Feldmueller M. Vuckovic Z. Flock T. Bauer B. Mutt E. Zosel F. Allain F.H.T. Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation Nat. Commun. 2019 10 1261 10.1038/s41467-019-09204-y 30890705 

  128. 128. Oakley R.H. Laporte S.A. Holt J.A. Caron M.G. Barak L.S. Differential affinities of visual arrestin, barrestin1, and barrestin2 for G protein-coupled receptors delineate two major classes of receptors J. Biol. Chem. 2000 275 17201 17210 10.1074/jbc.M910348199 10748214 

  129. 129. Zindel D. Butcher A.J. Al-Sabah S. Lanzerstorfer P. Weghuber J. Tobin A.B. Bunemann M. Krasel C. Engineered hyperphosphorylation of the β2-adrenoceptor prolongs arrestin-3 binding and induces arrestin internalization Mol. Pharmacol. 2015 87 349 362 10.1124/mol.114.095422 25425623 

  130. 130. Mukherjee S. Gurevich V.V. Preninger A. Hamm H.E. Bader M.-F. Fazleabas A.T. Birnbaumer L. Hunzicker-Dunn M. Aspartic acid 564 in the third cytoplasmic loop of luteinizing hormone/choriogonadotropin receptor is crucial for phosphorylation-independent interaction with arrestin2 J. Biol. Chem. 2002 277 17916 17927 10.1074/jbc.M110479200 11867621 

  131. 131. Toth A.D. Prokop S. Gyombolai P. Varnai P. Balla A. Gurevich V.V. Hunyady L. Turu G. Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins J. Biol. Chem. 2018 293 876 892 10.1074/jbc.M117.813139 29146594 

  132. 132. Hanyaloglu A.C. Vrecl M. Kroeger K.M. Miles L.E. Qian H. Thomas W.G. Eidne K.A. Casein kinase II sites in the intracellular C-terminal domain of the thyrotropin-releasing hormone receptor and chimeric gonadotropin-releasing hormone receptors contribute to β-arrestin-dependent internalization J. Biol. Chem. 2001 276 18066 18074 10.1074/jbc.M009275200 11278484 

  133. 133. Palczewski K. Buczylko J. Kaplan M.W. Polans A.S. Crabb J.W. Mechanism of rhodopsin kinase activation J. Biol. Chem. 1991 266 12949 12955 10.1016/S0021-9258(18)98787-9 2071581 

  134. 134. Chen C.Y. Dion S.B. Kim C.M. Benovic J.L. Beta-adrenergic receptor kinase. Agonist-dependent receptor binding promotes kinase activation J. Biol. Chem. 1993 268 7825 7831 10.1016/S0021-9258(18)53032-5 8096517 

  135. 135. Pack T.F. Orlen M.I. Ray C. Peterson S.M. Caron M.G. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation J. Biol. Chem. 2018 293 6161 6171 10.1074/jbc.RA117.001300 29487132 

  136. 136. Li L. Homan K.T. Vishnivetskiy S.A. Manglik A. Tesmer J.J. Gurevich V.V. Gurevich E.V. G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs) J. Biol. Chem. 2015 290 10775 10790 10.1074/jbc.M115.644773 25770216 

  137. 137. Van Eps N. Caro L.N. Morizumi T. Kusnetzow A.K. Szczepek M. Hofmann K.P. Bayburt T.H. Sligar S.G. Ernst O.P. Hubbell W.L. Conformational equilibria of light-activated rhodopsin in nanodiscs Proc. Natl. Acad. Sci. USA 2017 114 E3268 E3275 10.1073/pnas.1620405114 28373559 

  138. 138. Manglik A. Kim T.H. Masureel M. Altenbach C. Yang Z. Hilger D. Lerch M.T. Kobilka T.S. Thian F.S. Hubbell W.L. Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling Cell 2015 161 1101 1111 10.1016/j.cell.2015.04.043 25981665 

  139. 139. Fredericks Z.L. Pitcher J.A. Lefkowitz R.J. Identification of the G protein-coupled receptor kinase phosphorylation sites in the human beta2-adrenergic receptor J. Biol. Chem. 1996 271 13796 13803 10.1074/jbc.271.23.13796 8662852 

  140. 140. Hausdorff W.P. Bouvier M. O’Dowd B.F. Irons G.P. Caron M.G. Lefkowitz R.J. Phosphorylation sites on two domains of the beta 2-adrenergic receptor are involved in distinct pathways of receptor desensitization J. Biol. Chem. 1989 264 12657 12665 10.1016/S0021-9258(18)63907-9 2545714 

  141. 141. Seibold A. January B.G. Friedman J. Hipkin R.W. Clark R.B. Desensitization of beta2-adrenergic receptors with mutations of the proposed G protein-coupled receptor kinase phosphorylation sites J. Biol. Chem. 1998 273 7637 7642 10.1074/jbc.273.13.7637 9516468 

  142. 142. Seibold A. Williams B. Huang Z.F. Friedman J. Moore R.H. Knoll B.J. Clark R.B. Localization of the sites mediating desensitization of the beta(2)-adrenergic receptor by the GRK pathway Mol. Pharmacol. 2000 58 1162 1173 10.1124/mol.58.5.1162 11040066 

  143. 143. Walther C. Nagel S. Gimenez L.E. Morl K. Gurevich V.V. Beck-Sickinger A.G. Ligand-induced internalization and recycling of the human neuropeptide Y2 receptor is regulated by its carboxyl-terminal tail J. Biol. Chem. 2010 285 41578 41590 10.1074/jbc.M110.162156 20959467 

  144. 144. Celver J. Lowe J. Kovoor A. Gurevich V.V. Chavkin C. Threonine 180 is requred for G protein-coupled receptor kinase 3 and b-arrestin mediated desensitization of the m-opioid receptor in Xenopus oocytes J. Biol. Chem. 2001 276 4894 4900 10.1074/jbc.M007437200 11060299 

  145. 145. Nobles K.N. Xiao K. Ahn S. Shukla A.K. Lam C.M. Rajagopal S. Strachan R.T. Huang T.Y. Bressler E.A. Hara M.R. Distinct Phosphorylation Sites on the {beta}2-Adrenergic Receptor Establish a Barcode That Encodes Differential Functions of {beta}-Arrestin Sci. Signal. 2011 4 ra51 10.1126/scisignal.2001707 21868357 

  146. 146. Esmaeeli A. Ebrahimi F. Tanha K. Assadi M. Seyedabadi M. Low-dose angiotensin AT1 receptor β-arrestin-biased ligand, TRV027, protects against cisplatin-induced nephrotoxicity Pharmacol. Rep. 2020 10.1007/s43440-020-00172-5 

  147. 147. Esmaeeli A. Keshavarz Z. Dehdar F. Assadi M. Seyedabadi M. The effects of carvedilol, metoprolol and propranolol on cisplatin-induced kidney injury Drug Chem. Toxicol. 2020 1 7 10.1080/01480545.2020.1846551 

  148. 148. Pradhan A.A. Perroy J. Walwyn W.M. Smith M.L. Vicente-Sanchez A. Segura L. Bana A. Kieffer B.L. Evans C.J. Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function J. Neurosci. 2016 36 3541 3551 10.1523/JNEUROSCI.4124-15.2016 27013682 

  149. 149. McDonald P.H. Chow C.W. Miller W.E. Laporte S.A. Field M.E. Lin F.T. Davis R.J. Lefkowitz R.J. Beta-arrestin 2: A receptor-regulated MAPK scaffold for the activation of JNK3 Science 2000 290 1574 1577 10.1126/science.290.5496.1574 11090355 

  150. 150. Miller W.E. McDonald P.H. Cai S.F. Field M.E. Davis R.J. Lefkowitz R.J. Identification of a motif in the carboxyl terminus of beta-arrestin2 responsible for activation of JNK3 J. Biol. Chem. 2001 276 27770 27777 10.1074/jbc.M102264200 11356842 

  151. 151. Seo J. Tsakem E.L. Breitman M. Gurevich V.V. Identification of arrestin-3-specific residues necessary for JNK3 activation J. Biol. Chem. 2011 286 27894 27901 10.1074/jbc.M111.260448 21715332 

  152. 152. Song X. Coffa S. Fu H. Gurevich V.V. How does arrestin assemble MAPKs into a signaling complex? J. Biol. Chem. 2009 284 685 695 10.1074/jbc.M806124200 19001375 

  153. 153. Pera T. Hegde A. Deshpande D.A. Morgan S.J. Tiegs B.C. Theriot B.S. Choi Y.H. Walker J.K. Penn R.B. Specificity of arrestin subtypes in regulating airway smooth muscle G protein-coupled receptor signaling and function FASEB J. 2015 29 4227 4235 10.1096/fj.15-273094 26103985 

  154. 154. Zhang D.L. Sun Y.J. Ma M.L. Wang Y.J. Lin H. Li R.R. Liang Z.L. Gao Y. Yang Z. He D.F. Gq activity- and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility Elife 2018 7 e33432 10.7554/eLife.33432 29393851 

  155. 155. Alvarez-Curto E. Inoue A. Jenkins L. Raihan S.Z. Prihandoko R. Tobin A.B. Milligan G. Targeted Elimination of G Proteins and Arrestins Defines Their Specific Contributions to Both Intensity and Duration of G Protein-coupled Receptor Signaling J. Biol. Chem. 2016 291 27147 27159 10.1074/jbc.M116.754887 27852822 

  156. 156. Grundmann M. Merten N. Malfacini D. Inoue A. Preis P. Simon K. Ruttiger N. Ziegler N. Benkel T. Schmitt N.K. Lack of beta-arrestin signaling in the absence of active G proteins Nat. Commun. 2018 9 341 10.1038/s41467-017-02661-3 29362459 

  157. 157. O’Hayre M. Eichel K. Avino S. Zhao X. Steffen D.J. Feng X. Kawakami K. Aoki J. Messer K. Sunahara R. Genetic evidence that β-arrestins are dispensable for the initiation of β2-adrenergic receptor signaling to ERK Sci. Signal. 2017 10 484 10.1126/scisignal.aal3395 28634209 

  158. 158. Luttrell L.M. Wang J. Plouffe B. Smith J.S. Yamani L. Kaur S. Jean-Charles P.-Y. Gauthier C. Lee M.-H. Pani B. Manifold roles of beta-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9 Sci. Signal. 2018 11 eaat7650 10.1126/scisignal.aat7650 30254056 

  159. 159. Gurevich V.V. Gurevich E.V. Arrestin-mediated signaling: Is there a controversy? World J. Biol. Chem. 2018 9 25 35 10.4331/wjbc.v9.i3.25 30595812 

  160. 160. Luttrell L.M. Ferguson S.S. Daaka Y. Miller W.E. Maudsley S. Della Rocca G.J. Lin F. Kawakatsu H. Owada K. Luttrell D.K. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes Science 1999 283 655 661 10.1126/science.283.5402.655 9924018 

  161. 161. Bruchas M.R. Macey T.A. Lowe J.D. Chavkin C. Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes J. Biol. Chem. 2006 281 18081 18089 10.1074/jbc.M513640200 16648139 

  162. 162. Breitman M. Kook S. Gimenez L.E. Lizama B.N. Palazzo M.C. Gurevich E.V. Gurevich V.V. Silent scaffolds: Inhibition of c-Jun N-terminal kinase 3 activity in the cell by a dominant-negative arrestin-3 mutant J. Biol. Chem. 2012 287 19653 19664 10.1074/jbc.M112.358192 22523077 

  163. 163. Zimmerman B. Beautrait A. Aguila B. Charles R. Escher E. Claing A. Bouvier M. Laporte S.A. Differential β-Arrestin?Dependent Conformational Signaling and Cellular Responses Revealed by Angiotensin Analogs Sci. Signal. 2012 5 ra33 10.1126/scisignal.2002522 22534132 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로