$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Estimation of Axle Torque for an Agricultural Tractor Using an Artificial Neural Network 원문보기

Sensors, v.21 no.6, 2021년, pp.1989 -   

Kim, Wan-Soo (Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Korea) ,  Lee, Dae-Hyun (wskim0726@gmail.com (W.-S.K.)) ,  Kim, Yong-Joo (kimtech612@gmail.com (Y.-S.K.)) ,  Kim, Yeon-Soo (Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Korea) ,  Park, Seong-Un (wskim0726@gmail.com (W.-S.K.))

Abstract AI-Helper 아이콘AI-Helper

The objective of this study was to develop a model to estimate the axle torque (AT) of a tractor using an artificial neural network (ANN) based on a relatively low-cost sensor. ANN has proven to be useful in the case of nonlinear analysis, and it can be applied to consider nonlinear variables such a...

Keyword

참고문헌 (31)

  1. 1. Mattetti M. Maraldi M. Sedoni E. Molari G. Optimal criteria for durability test of stepped transmissions of agricultural tractors Biosyst. Eng. 2019 178 145 155 10.1016/j.biosystemseng.2018.11.014 

  2. 2. Baek S.M. Kim W.S. Kim Y.S. Baek S.Y. Kim Y.J. Design of the Hydro-Mechanical Transmission for a 55kW-Class Agricultural Tractor J. Drive Control 2020 17 19 27 

  3. 3. Kim T.J. Kim W.S. Kim Y.S. Chung S.O. Park S.U. Hong S.J. Choi C.H. Kim Y.J. Strength analysis of mechanical transmission using equivalent torque of plow tillage of an 82 kW-class tractor Korean J. Agric. Sci. 2019 46 723 735 

  4. 4. Baek S.M. Kim W.S. Kim Y.S. Lee N.G. Kim N.-h. Kim Y.J. Analysis of the load distribution and contact safety factor of PTO gears of a 71 kW class agricultural tractor Korean J. Agric. Sci. 2020 47 327 335 

  5. 5. Kim W.S. Kim Y.S. Kim Y.J. Development of prediction model for axle torque of agricultural tractors Trans. ASABE 2020 63 1773 1786 10.13031/trans.14012 

  6. 6. Bai J. Wu X. Gao F. Li H. Analysis of powertrain loading dynamic characteristics and the effects on fatigue damage Appl. Sci. 2017 7 1027 10.3390/app7101027 

  7. 7. Pitla S.K. Luck J.D. Werner J. Lin N. Shearer S.A. In-field fuel use and load states of agricultural field machinery Comput. Electron. Agric. 2016 121 290 300 10.1016/j.compag.2015.12.023 

  8. 8. Kim W.S. Baek S.Y. Kim T.J. Kim Y.S. Park S.U. Choi C.H. Hong S.J. Kim Y.J. Work load analysis for determination of the reduction gear ratio for a 78 kW all wheel drive electric tractor design Korean J. Agric. Sci. 2019 46 613 627 

  9. 9. Abbaspour-Gilandeh Y. Fazeli M. Roshanianfard A. Hernández-Hernández M. Gallardo-Bernal I. Hernández-Hernández J.L. Prediction of draft force of a chisel cultivator using artificial neural networks and its comparison with regression model Agronomy 2020 10 451 

  10. 10. Kumar A.A. Tewari V.K. Nare B. Chetan C.R. Srivastava P. Prakash Kumar S. Embedded digital drive wheel torque indicator for agricultural 2WD tractors Comput. Electron. Agric. 2017 139 91 102 10.1016/j.compag.2017.05.007 

  11. 11. Kim W.S. Kim Y.J. Baek S.Y. Baek S.M. Kim Y.S. Park S.U. Development of a prediction model for tractor axle torque during tillage operation Appl. Sci. 2020 10 4195 10.3390/app10124195 

  12. 12. Basak J.K. Qasim W. Okyere F.G. Khan F. Lee Y.J. Park J. Kim H.T. Regression analysis to estimate morphology parameters of pepper plant in a controlled greenhouse system J. Biosyst. Eng. 2019 44 57 68 10.1007/s42853-019-00014-0 

  13. 13. Lee D.H. Lee S.H. Cho B.K. Wakholi C. Seo Y.W. Cho S.H. Kang T.H. Lee W.H. Estimation of carcass weight of hanwoo (Korean native cattle) as a function of body measurements using statistical models and a neural network Asian-Australas. J. Anim. Sci. 2020 33 1633 1641 10.5713/ajas.19.0748 32054178 

  14. 14. Kim W.S. Kim Y.J. Baek S.M. Baek S.Y. Moon S.P. Lee N.G. Kim T.J. Siddique M.A.A. Jeon H.h. Kim Y.S. Effect of the Cone Index on the Work Load of the Agricultural Tractor J. Drive Control 2020 17 9 18 

  15. 15. Kim Y.S. Kim W.S. Baek S.Y. Baek S.M. Kim Y.J. Lee S.D. Kim Y.J. Analysis of tillage depth and gear selection for mechanical load and fuel efficiency of an agricultural tractor using an agricultural field measuring system Sensors 2020 20 2450 10.3390/s20092450 32357392 

  16. 16. Kim W.S. Kim Y.J. Baek S.Y. Baek S.M. Kim Y.S. Choi Y. Kim Y.K. Choi I.S. Traction performance evaluation of a 78-kW-class agricultural tractor using cone index map in a Korean paddy field J. Terramechanics 2020 91 285 296 10.1016/j.jterra.2020.08.005 

  17. 17. Kim W.S. Kim Y.J. Park S.U. Kim Y.S. Influence of soil moisture content on the traction performance of a 78-kW agricultural tractor during plow tillage Soil Tillage Res. 2020 207 104851 

  18. 18. Upadhyay G. Raheman H. Performance of combined offset disc harrow (front active and rear passive set configuration) in soil bin J. Terramechanics 2018 78 27 37 10.1016/j.jterra.2018.04.002 

  19. 19. Mason G.L. Williams J.M. Vahedifard F. Priddy J.D. A unified equation for predicting traction for wheels on sand over a range of braked, towed, and powered operations J. Terramechanics 2018 79 33 40 10.1016/j.jterra.2018.05.005 

  20. 20. Okyere F.G. Qasim W. Basak J.K. Khan F. Lee Y.J. Park J. Arulmozhi E. Yoon Y.C. Kang D.S. Kim H.T. Analysis of draft force requirement of a compact disc harrow and model development for future predictions J. Biosyst. Eng. 2019 44 47 56 10.1007/s42853-019-00003-3 

  21. 21. Abbaspour-Gilandeh Y. Sabzi S. Benmouna B. García-Mateos G. Hernández-Hernández J.L. Molina-Martínez J.M. Estimation of the constituent properties of red delicious apples using a hybrid of artificial neural networks and artificial bee colony algorithm Agronomy 2020 10 267 10.3390/agronomy10020267 

  22. 22. Bietresato M. Calcante A. Mazzetto F. A neural network approach for indirectly estimating farm tractors engine performances Fuel 2015 143 144 154 10.1016/j.fuel.2014.11.019 

  23. 23. Rajabi-Vandechali M. Abbaspour-Fard M.H. Rohani A. Development of a prediction model for estimating tractor engine torque based on soft computing and low cost sensors Measurement 2018 121 83 95 10.1016/j.measurement.2018.02.050 

  24. 24. American Society of Agricultural and Biological Engineers S313.3. Soil Cone Penetrometer ASABE St. Joseph, MI, USA 2013 

  25. 25. American Society of Agricultural and Biological Engineers EP542.1 Procedures for Using and Reporting Data Obtained with the Soil Cone Penetrometer ASABE St. Joseph, MI, USA 2019 

  26. 26. Baek S.Y. Kim W.S. Kim Y.S. Kim Y.J. Park C.G. An S.C. Moon H.C. Kim B.S. Development of a simulation model for an 80 kW-class electric all-wheel-drive (AWD) tractor using agricultural workload J. Drive Control 2020 17 27 36 

  27. 27. Liao J. Hewitt A.J. Wang P. Luo X. Zang Y. Zhou Z. Lan Y. O’donnell C. Development of droplet characteristics prediction models for air induction nozzles based on wind tunnel tests Int. J. Agric. Biol. Eng. 2019 12 1 6 10.25165/j.ijabe.20191206.5014 

  28. 28. Moon S. Ahmadnezhad P. Song H.-J. Thompson J. Kipp K. Akinwuntan A.E. Devos H. Artificial neural networks in neurorehabilitation: A scoping review NeuroRehabilitation 2020 46 259 269 10.3233/NRE-192996 32250332 

  29. 29. Kim K.U. Soil-Machine Systems Engineerings Seoul National University Press Seoul, Korea 2020 

  30. 30. Niedbała G. Piekutowska M. Weres J. Korzeniewicz R. Witaszek K. Adamski M. Pilarski K. Czechowska-Kosacka A. Krysztofiak-Kaniewska A. Application of artificial neural networks for yield modeling of winter rapeseed based on combined quantitative and qualitative data Agronomy 2019 9 781 10.3390/agronomy9120781 

  31. 31. Tkachenko R. Izonin I. Vitynskyi P. Lotoshynska N. Pavlyuk O. Development of the non-iterative supervised learning predictor based on the ito decomposition and sgtm neural-like structure for managing medical insurance costs Data 2018 3 46 10.3390/data3040046 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로