최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Sensors, v.21 no.6, 2021년, pp.1989 -
Kim, Wan-Soo (Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Korea) , Lee, Dae-Hyun (wskim0726@gmail.com (W.-S.K.)) , Kim, Yong-Joo (kimtech612@gmail.com (Y.-S.K.)) , Kim, Yeon-Soo (Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Korea) , Park, Seong-Un (wskim0726@gmail.com (W.-S.K.))
The objective of this study was to develop a model to estimate the axle torque (AT) of a tractor using an artificial neural network (ANN) based on a relatively low-cost sensor. ANN has proven to be useful in the case of nonlinear analysis, and it can be applied to consider nonlinear variables such a...
1. Mattetti M. Maraldi M. Sedoni E. Molari G. Optimal criteria for durability test of stepped transmissions of agricultural tractors Biosyst. Eng. 2019 178 145 155 10.1016/j.biosystemseng.2018.11.014
2. Baek S.M. Kim W.S. Kim Y.S. Baek S.Y. Kim Y.J. Design of the Hydro-Mechanical Transmission for a 55kW-Class Agricultural Tractor J. Drive Control 2020 17 19 27
5. Kim W.S. Kim Y.S. Kim Y.J. Development of prediction model for axle torque of agricultural tractors Trans. ASABE 2020 63 1773 1786 10.13031/trans.14012
6. Bai J. Wu X. Gao F. Li H. Analysis of powertrain loading dynamic characteristics and the effects on fatigue damage Appl. Sci. 2017 7 1027 10.3390/app7101027
7. Pitla S.K. Luck J.D. Werner J. Lin N. Shearer S.A. In-field fuel use and load states of agricultural field machinery Comput. Electron. Agric. 2016 121 290 300 10.1016/j.compag.2015.12.023
9. Abbaspour-Gilandeh Y. Fazeli M. Roshanianfard A. Hernández-Hernández M. Gallardo-Bernal I. Hernández-Hernández J.L. Prediction of draft force of a chisel cultivator using artificial neural networks and its comparison with regression model Agronomy 2020 10 451
10. Kumar A.A. Tewari V.K. Nare B. Chetan C.R. Srivastava P. Prakash Kumar S. Embedded digital drive wheel torque indicator for agricultural 2WD tractors Comput. Electron. Agric. 2017 139 91 102 10.1016/j.compag.2017.05.007
11. Kim W.S. Kim Y.J. Baek S.Y. Baek S.M. Kim Y.S. Park S.U. Development of a prediction model for tractor axle torque during tillage operation Appl. Sci. 2020 10 4195 10.3390/app10124195
12. Basak J.K. Qasim W. Okyere F.G. Khan F. Lee Y.J. Park J. Kim H.T. Regression analysis to estimate morphology parameters of pepper plant in a controlled greenhouse system J. Biosyst. Eng. 2019 44 57 68 10.1007/s42853-019-00014-0
13. Lee D.H. Lee S.H. Cho B.K. Wakholi C. Seo Y.W. Cho S.H. Kang T.H. Lee W.H. Estimation of carcass weight of hanwoo (Korean native cattle) as a function of body measurements using statistical models and a neural network Asian-Australas. J. Anim. Sci. 2020 33 1633 1641 10.5713/ajas.19.0748 32054178
14. Kim W.S. Kim Y.J. Baek S.M. Baek S.Y. Moon S.P. Lee N.G. Kim T.J. Siddique M.A.A. Jeon H.h. Kim Y.S. Effect of the Cone Index on the Work Load of the Agricultural Tractor J. Drive Control 2020 17 9 18
15. Kim Y.S. Kim W.S. Baek S.Y. Baek S.M. Kim Y.J. Lee S.D. Kim Y.J. Analysis of tillage depth and gear selection for mechanical load and fuel efficiency of an agricultural tractor using an agricultural field measuring system Sensors 2020 20 2450 10.3390/s20092450 32357392
16. Kim W.S. Kim Y.J. Baek S.Y. Baek S.M. Kim Y.S. Choi Y. Kim Y.K. Choi I.S. Traction performance evaluation of a 78-kW-class agricultural tractor using cone index map in a Korean paddy field J. Terramechanics 2020 91 285 296 10.1016/j.jterra.2020.08.005
17. Kim W.S. Kim Y.J. Park S.U. Kim Y.S. Influence of soil moisture content on the traction performance of a 78-kW agricultural tractor during plow tillage Soil Tillage Res. 2020 207 104851
18. Upadhyay G. Raheman H. Performance of combined offset disc harrow (front active and rear passive set configuration) in soil bin J. Terramechanics 2018 78 27 37 10.1016/j.jterra.2018.04.002
19. Mason G.L. Williams J.M. Vahedifard F. Priddy J.D. A unified equation for predicting traction for wheels on sand over a range of braked, towed, and powered operations J. Terramechanics 2018 79 33 40 10.1016/j.jterra.2018.05.005
20. Okyere F.G. Qasim W. Basak J.K. Khan F. Lee Y.J. Park J. Arulmozhi E. Yoon Y.C. Kang D.S. Kim H.T. Analysis of draft force requirement of a compact disc harrow and model development for future predictions J. Biosyst. Eng. 2019 44 47 56 10.1007/s42853-019-00003-3
21. Abbaspour-Gilandeh Y. Sabzi S. Benmouna B. García-Mateos G. Hernández-Hernández J.L. Molina-Martínez J.M. Estimation of the constituent properties of red delicious apples using a hybrid of artificial neural networks and artificial bee colony algorithm Agronomy 2020 10 267 10.3390/agronomy10020267
22. Bietresato M. Calcante A. Mazzetto F. A neural network approach for indirectly estimating farm tractors engine performances Fuel 2015 143 144 154 10.1016/j.fuel.2014.11.019
23. Rajabi-Vandechali M. Abbaspour-Fard M.H. Rohani A. Development of a prediction model for estimating tractor engine torque based on soft computing and low cost sensors Measurement 2018 121 83 95 10.1016/j.measurement.2018.02.050
24. American Society of Agricultural and Biological Engineers S313.3. Soil Cone Penetrometer ASABE St. Joseph, MI, USA 2013
25. American Society of Agricultural and Biological Engineers EP542.1 Procedures for Using and Reporting Data Obtained with the Soil Cone Penetrometer ASABE St. Joseph, MI, USA 2019
26. Baek S.Y. Kim W.S. Kim Y.S. Kim Y.J. Park C.G. An S.C. Moon H.C. Kim B.S. Development of a simulation model for an 80 kW-class electric all-wheel-drive (AWD) tractor using agricultural workload J. Drive Control 2020 17 27 36
27. Liao J. Hewitt A.J. Wang P. Luo X. Zang Y. Zhou Z. Lan Y. O’donnell C. Development of droplet characteristics prediction models for air induction nozzles based on wind tunnel tests Int. J. Agric. Biol. Eng. 2019 12 1 6 10.25165/j.ijabe.20191206.5014
28. Moon S. Ahmadnezhad P. Song H.-J. Thompson J. Kipp K. Akinwuntan A.E. Devos H. Artificial neural networks in neurorehabilitation: A scoping review NeuroRehabilitation 2020 46 259 269 10.3233/NRE-192996 32250332
29. Kim K.U. Soil-Machine Systems Engineerings Seoul National University Press Seoul, Korea 2020
30. Niedbała G. Piekutowska M. Weres J. Korzeniewicz R. Witaszek K. Adamski M. Pilarski K. Czechowska-Kosacka A. Krysztofiak-Kaniewska A. Application of artificial neural networks for yield modeling of winter rapeseed based on combined quantitative and qualitative data Agronomy 2019 9 781 10.3390/agronomy9120781
31. Tkachenko R. Izonin I. Vitynskyi P. Lotoshynska N. Pavlyuk O. Development of the non-iterative supervised learning predictor based on the ito decomposition and sgtm neural-like structure for managing medical insurance costs Data 2018 3 46 10.3390/data3040046
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.