$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Design Principles of NiFe-Layered Double Hydroxide Anode Catalysts for Anion Exchange Membrane Water Electrolyzers

ACS applied materials & interfaces, v.13 no.31, 2021년, pp.37179 - 37186  

Jeon, Sun Seo (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Lim, Jinkyu (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Kang, Phil Woong (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Lee, Jae Won (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Kang, Gihun (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Lee, Hyunjoo

Abstract AI-Helper 아이콘AI-Helper

Much effort has been devoted to developing electrocatalysts applicable to anion exchange membrane water electrolyzers (AEMWEs). Among many candidates for oxygen evolution reaction, NiFe-layered double hydroxide (LDH)-based electrocatalysts show the highest activity in an alkaline medium. Unfortunate...

Keyword

참고문헌 (46)

  1. Luo, Xing, Wang, Jihong, Dooner, Mark, Clarke, Jonathan. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied energy, vol.137, 511-536.

  2. Zhang, F., Zhao, P., Niu, M., Maddy, J.. The survey of key technologies in hydrogen energy storage. International journal of hydrogen energy, vol.41, no.33, 14535-14552.

  3. Lagadec, Marie Francine, Grimaud, Alexis. Water electrolysers with closed and open electrochemical systems. Nature materials, vol.19, no.11, 1140-1150.

  4. Pham, Thanh Huong, Olsson, Joel S., Jannasch, Patric. N-Spirocyclic Quaternary Ammonium Ionenes for Anion-Exchange Membranes. Journal of the American Chemical Society, vol.139, no.8, 2888-2891.

  5. Xu, Dongyu, Stevens, Michaela Burke, Cosby, Monty R., Oener, Sebastian Z., Smith, Adam M., Enman, Lisa J., Ayers, Katherine E., Capuano, Christopher B., Renner, Julie N., Danilovic, Nemanja, Li, Yaogang, Wang, Hongzhi, Zhang, Qinghong, Boettcher, Shannon W.. Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells. ACS catalysis, vol.9, no.1, 7-15.

  6. Zhang, Bo, Zheng, Xueli, Voznyy, Oleksandr, Comin, Riccardo, Bajdich, Michal, García-Melchor, Max, Han, Lili, Xu, Jixian, Liu, Min, Zheng, Lirong, García de Arquer, F. Pelayo, Dinh, Cao Thang, Fan, Fengjia, Yuan, Mingjian, Yassitepe, Emre, Chen, Ning, Regier, Tom, Liu, Pengfei, Li, Yuhang, De Luna, Phil, Janmohamed, Alyf, Xin, Huolin L., Yang, Huagui, Vojvodic, Aleksandra, Sargent, Edward H.. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, vol.352, no.6283, 333-337.

  7. Gong, Ming, Li, Yanguang, Wang, Hailiang, Liang, Yongye, Wu, Justin Z., Zhou, Jigang, Wang, Jian, Regier, Tom, Wei, Fei, Dai, Hongjie. An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, vol.135, no.23, 8452-8455.

  8. Dionigi, Fabio, Zeng, Zhenhua, Sinev, Ilya, Merzdorf, Thomas, Deshpande, Siddharth, Lopez, Miguel Bernal, Kunze, Sebastian, Zegkinoglou, Ioannis, Sarodnik, Hannes, Fan, Dingxin, Bergmann, Arno, Drnec, Jakub, Araujo, Jorge Ferreira de, Gliech, Manuel, Teschner, Detre, Zhu, Jing, Li, Wei-Xue, Greeley, Jeffrey, Cuenya, Beatriz Roldan, Strasser, Peter. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nature communications, vol.11, no.1, 2522-.

  9. Nayak, Susanginee, Mohapatra, Lagnamayee, Parida, Kulamani. Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.36, 18622-18635.

  10. Nayak, Susanginee, Parida, K. M.. Deciphering Z-scheme Charge Transfer Dynamics in Heterostructure NiFe-LDH/N-rGO/g-C 3 N 4 Nanocomposite for Photocatalytic Pollutant Removal and Water Splitting Reactions. Scientific reports, vol.9, 2458-.

  11. Li, Changming, Wei, Min, Evans, David G., Duan, Xue. Layered Double Hydroxide‐based Nanomaterials as Highly Efficient Catalysts and Adsorbents. Small, vol.10, no.22, 4469-4486.

  12. Song, Fang, Hu, Xile. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature communications, vol.5, 4477-.

  13. Zhang, Jingfang, Liu, Jieyu, Xi, Lifei, Yu, Yifu, Chen, Ning, Sun, Shuhui, Wang, Weichao, Lange, Kathrin M., Zhang, Bin. Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. Journal of the American Chemical Society, vol.140, no.11, 3876-3879.

  14. McCrory, Charles C. L., Jung, Suho, Ferrer, Ivonne M., Chatman, Shawn M., Peters, Jonas C., Jaramillo, Thomas F.. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. Journal of the American Chemical Society, vol.137, no.13, 4347-4357.

  15. Long, X., Wang, Z., Xiao, S., An, Y., Yang, S.. Transition metal based layered double hydroxides tailored for energy conversion and storage. Materials today, vol.19, no.4, 213-226.

  16. Wang, Liu, Yucheng, Li, Jun, Luo, Jin, Fu, Lei, Chen, Shengli. NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. Journal of materials chemistry. A, Materials for energy and sustainability, vol.6, no.29, 14299-14306.

  17. Gupta, Shiva, Zhao, Shuai, Wang, Xiao Xia, Hwang, Sooyeon, Karakalos, Stavros, Devaguptapu, Surya V., Mukherjee, Shreya, Su, Dong, Xu, Hui, Wu, Gang. Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon. ACS catalysis, vol.7, no.12, 8386-8393.

  18. Yi, Youngmi, Weinberg, Gisela, Prenzel, Marina, Greiner, Mark, Heumann, Saskia, Becker, Sylvia, Schlögl, Robert. Electrochemical corrosion of a glassy carbon electrode. Catalysis today, vol.295, 32-40.

  19. Yang, Juchan, Park, Seungyoung, Choi, Kyoung young, Park, Han-Saem, Cho, Yoon-Gyo, Ko, Hyunhyub, Song, Hyun-Kon. Activity-Durability Coincidence of Oxygen Evolution Reaction in the Presence of Carbon Corrosion: Case Study of MnCo2O4 Spinel with Carbon Black. ACS sustainable chemistry et engineering, vol.6, no.8, 9566-9571.

  20. Zhou, Daojin, Wang, Shiyuan, Jia, Yin, Xiong, Xuya, Yang, Hongbin, Liu, Song, Tang, Jialun, Zhang, Junming, Liu, Dong, Zheng, Lirong, Kuang, Yun, Sun, Xiaoming, Liu, Bin. NiFe Hydroxide Lattice Tensile Strain: Enhancement of Adsorption of Oxygenated Intermediates for Efficient Water Oxidation Catalysis. Angewandte Chemie. international edition, vol.58, no.3, 736-740.

  21. Zhang, Xin, Zhao, Yufei, Zhao, Yunxuan, Shi, Run, Waterhouse, Geoffrey I. N., Zhang, Tierui. A Simple Synthetic Strategy toward Defect‐Rich Porous Monolayer NiFe‐Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Water Oxidation. Advanced energy materials, vol.9, no.24, 1900881-.

  22. Ma, Renzhi, Liu, Zhaoping, Li, Liang, Iyi, Nobuo, Sasaki, Takayoshi. Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets. Journal of materials chemistry, vol.16, no.39, 3809-3813.

  23. Gao, Rui, Yan, Dongpeng. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano research, vol.11, no.4, 1883-1894.

  24. Dionigi, Fabio, Strasser, Peter. NiFe‐Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non‐Acidic Electrolytes. Advanced energy materials, vol.6, no.23, 1600621-.

  25. Zhang, Bo, Wang, Lie, Cao, Zhen, Kozlov, Sergey M., García de Arquer, F. Pelayo, Dinh, Cao Thang, Li, Jun, Wang, Ziyun, Zheng, Xueli, Zhang, Longsheng, Wen, Yunzhou, Voznyy, Oleksandr, Comin, Riccardo, De Luna, Phil, Regier, Tom, Bi, Wenli, Alp, E. Ercan, Pao, Chih-Wen, Zheng, Lirong, Hu, Yongfeng, Ji, Yujin, Li, Youyong, Zhang, Ye, Cavallo, Luigi, Peng, Huisheng, Sargent, Edward H.. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature catalysis, vol.3, no.12, 985-992.

  26. Trotochaud, Lena, Young, Samantha L., Ranney, James K., Boettcher, Shannon W.. Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society, vol.136, no.18, 6744-6753.

  27. Chung, Dong Young, Park, Subin, Lopes, Pietro P., Stamenkovic, Vojislav R., Sung, Yung-Eun, Markovic, Nenad M., Strmcnik, Dusan. Electrokinetic Analysis of Poorly Conductive Electrocatalytic Materials. ACS catalysis, vol.10, 4990-4996.

  28. Wang, Hsin‐Yi, Hsu, Ying‐Ya, Chen, Rong, Chan, Ting‐Shan, Chen, Hao Ming, Liu, Bin. Ni3+‐Induced Formation of Active NiOOH on the Spinel Ni-Co Oxide Surface for Efficient Oxygen Evolution Reaction. Advanced energy materials, vol.5, no.10, 1500091-.

  29. George, Jijo Easo, Chidangil, Santhosh, George, Sajan Daniel. Recent Progress in Fabricating Superaerophobic and Superaerophilic Surfaces. Advanced materials interfaces, vol.4, no.9, 1601088-.

  30. Park, Yoo Sei, Yang, Juchan, Lee, Jongmin, Jang, Myeong Je, Jeong, Jaehoon, Choi, Woo-Sung, Kim, Yangdo, Yin, Yadong, Seo, Min Ho, Chen, Zhongwei, Choi, Sung Mook. Superior performance of anion exchange membrane water electrolyzer: Ensemble of producing oxygen vacancies and controlling mass transfer resistance. Applied catalysis. B, Environmental, vol.278, 119276-.

  31. Park, Ji Eun, Kang, Sun Young, Oh, Seung-Hyeon, Kim, Jong Kwan, Lim, Myung Su, Ahn, Chi-Yeong, Cho, Yong-Hun, Sung, Yung-Eun. High-performance anion-exchange membrane water electrolysis. Electrochimica acta, vol.295, 99-106.

  32. Alia, Shaun M., Rasimick, Brian, Ngo, Chilan, Neyerlin, K. C., Kocha, Shyam S., Pylypenko, Svitlana, Xu, Hui, Pivovar, Bryan S.. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction. Journal of the Electrochemical Society : JES, vol.163, no.11, F3105-F3112.

  33. Chen, Pengzuo, Hu, Xile. High‐Efficiency Anion Exchange Membrane Water Electrolysis Employing Non‐Noble Metal Catalysts. Advanced energy materials, vol.10, no.39, 2002285-.

  34. Koshikawa, Hiroyuki, Murase, Hideaki, Hayashi, Takao, Nakajima, Kosuke, Mashiko, Hisanori, Shiraishi, Seigo, Tsuji, Yoichiro. Single Nanometer-Sized NiFe-Layered Double Hydroxides as Anode Catalyst in Anion Exchange Membrane Water Electrolysis Cell with Energy Conversion Efficiency of 74.7% at 1.0 A cm-2. ACS catalysis, vol.10, 1886-1893.

  35. Grdeń, Michał, Alsabet, Mohammad, Jerkiewicz, Gregory. Surface Science and Electrochemical Analysis of Nickel Foams. ACS applied materials & interfaces, vol.4, no.6, 3012-3021.

  36. Park, Yoo Sei, Lee, Jeong Hun, Jang, Myeong Je, Jeong, Jaehoon, Park, Sung Min, Choi, Woo-Sung, Kim, Yangdo, Yang, Juchan, Choi, Sung Mook. Co3S4 nanosheets on Ni foam via electrodeposition with sulfurization as highly active electrocatalysts for anion exchange membrane electrolyzer. International journal of hydrogen energy, vol.45, no.1, 36-45.

  37. Lee, Jooyoung, Jung, Hyeonjung, Park, Yoo Sei, Woo, Seongwon, Kwon, Nayoung, Xing, Yaolong, Oh, Sang Ho, Choi, Sung Mook, Han, Jeong Woo, Lim, Byungkwon. Corrosion-engineered bimetallic oxide electrode as anode for high-efficiency anion exchange membrane water electrolyzer. Chemical engineering journal, vol.420, no.2, 127670-.

  38. Park, Yoo Sei, Jang, Myeong Je, Jeong, Jaehoon, Park, Sung Min, Wang, Xiaolei, Seo, Min Ho, Choi, Sung Mook, Yang, Juchan. Hierarchical Chestnut-Burr Like Structure of Copper Cobalt Oxide Electrocatalyst Directly Grown on Ni Foam for Anion Exchange Membrane Water Electrolysis. ACS sustainable chemistry et engineering, vol.8, no.6, 2344-2349.

  39. Jang, Myeong Je, Yang, Juchan, Lee, Jongmin, Park, Yoo Sei, Jeong, Jaehoon, Park, Seong Min, Jeong, Jae-Yeop, Yin, Yadong, Seo, Min-Ho, Choi, Sung Mook, Lee, Kyu Hwan. Superior performance and stability of anion exchange membrane water electrolysis: pH-controlled copper cobalt oxide nanoparticles for the oxygen evolution reaction. Journal of materials chemistry. A, Materials for energy and sustainability, vol.8, no.8, 4290-4299.

  40. Li, Dongguo, Park, Eun Joo, Zhu, Wenlei, Shi, Qiurong, Zhou, Yang, Tian, Hangyu, Lin, Yuehe, Serov, Alexey, Zulevi, Barr, Baca, Ehren Donel, Fujimoto, Cy, Chung, Hoon T., Kim, Yu Seung. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nature energy, vol.5, no.5, 378-385.

  41. Vincent, Immanuel, Lee, Eun-Chong, Kim, Hyung-Man. Highly cost-effective platinum-free anion exchange membrane electrolysis for large scale energy storage and hydrogen production. RSC advances, vol.10, no.61, 37429-37438.

  42. Cossar, Emily, Oyarce Barnett, Alejandro, Seland, Frode, Baranova, Elena A.. The Performance of Nickel and Nickel-Iron Catalysts Evaluated As Anodes in Anion Exchange Membrane Water Electrolysis. Catalysts, vol.9, no.10, 814-.

  43. Wang, Li, Weissbach, Thomas, Reissner, Regine, Ansar, Asif, Gago, Aldo S., Holdcroft, Steven, Friedrich, K. Andreas. High Performance Anion Exchange Membrane Electrolysis Using Plasma-Sprayed, Non-Precious-Metal Electrodes. ACS applied energy materials, vol.2, no.11, 7903-7912.

  44. Lim, Ahyoun, Kim, Hyoung-juhn, Henkensmeier, Dirk, Jong Yoo, Sung, Young Kim, Jin, Young Lee, So, Sung, Yung-Eun, Jang, Jong Hyun, Park, Hyun S.. A study on electrode fabrication and operation variables affecting the performance of anion exchange membrane water electrolysis. Journal of industrial and engineering chemistry : JIEC, vol.76, 410-418.

  45. Campagna Zignani, Sabrina, Lo Faro, Massimiliano, Trocino, Stefano, Aricò, Antonino Salvatore. Investigation of NiFe-Based Catalysts for Oxygen Evolution in Anion-Exchange Membrane Electrolysis. Energies, vol.13, no.7, 1720-.

  46. Kang, Sinwoo, Ham, Kahyun, Lee, Jaeyoung. Moderate oxophilic CoFe in carbon nanofiber for the oxygen evolution reaction in anion exchange membrane water electrolysis. Electrochimica acta, vol.353, 136521-.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로