$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Performance and Cost Analysis of Natural Gas Combined Cycle Plants with Chemical Looping Combustion 원문보기

ACS omega, v.6 no.32 = no.32, 2021년, pp.21043 - 21058  

Oh, Dong-Hoon (Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro, Seodaemun-gu , Seoul 03722 , Republic of Korea) ,  Lee, Chang-Ha ,  Lee, Jae-Cheol

Abstract AI-Helper 아이콘AI-Helper

The natural gas combined cycle (NGCC) is the most popular and efficient fossil fuel power plant; however, integrating a carbon capture system reduces its performance efficiency. The demand to reduce the carbon capture cost and improve eco-friendliness drives the development of alternatives. In this ...

참고문헌 (45)

  1. France?Countries & Regions , IEA . https://www.iea.org/countries/france (accessed 2021-04-22). 

  2. Zhu L. ; Chen H. ; Fan J. ; Jiang P. Thermo-Economic Investigation: An Insight Tool to Analyze NGCC with Calcium-Looping Process and with Chemical-Looping Combustion for CO 2 Capture . Int. J. Energy Res. 2016 , 40 , 1908 ? 1924 . 10.1002/er.3556 . 

  3. Lee W. S. ; Kang J. H. ; Lee J. C. ; Lee C. H. Enhancement of Energy Efficiency by Exhaust Gas Recirculation with Oxygen-Rich Combustion in a Natural Gas Combined Cycle with a Carbon Capture Process . Energy 2020 , 200 , 117586 10.1016/j.energy.2020.117586 . 

  4. James R. E. III PhD ; Kearins D. ; Turner M. ; Woods M. ; Kuehn N. ; Zoelle A. Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity ; NETL-PUB-22638, 2019 . 10.2172/1569246 

  5. Industrial Construction Estimating Manual?1st ed. https://www.elsevier.com/books/industrial-construction-estimating-manual/storm/978-0-12-823362-7 (accessed 2021-04-22). 

  6. Hu Y. ; Xu G. ; Xu C. ; Yang Y. Thermodynamic Analysis and Techno-Economic Evaluation of an Integrated Natural Gas Combined Cycle (NGCC) Power Plant with Post-Combustion CO 2 Capture . Appl. Therm. Eng. 2017 , 111 , 308 ? 316 . 10.1016/j.applthermaleng.2016.09.094 . 

  7. Farooqui A. ; Bose A. ; Ferrero D. ; Llorca J. ; Santarelli M. Techno-Economic and Exergetic Assessment of an Oxy-Fuel Power Plant Fueled by Syngas Produced by Chemical Looping CO 2 and H 2 O Dissociation . J. CO 2 Util. 2018 , 27 , 500 ? 517 . 10.1016/j.jcou.2018.09.001 . 

  8. Peeters A. N. M. ; Faaij A. P. C. ; Turkenburg W. C. Techno-Economic Analysis of Natural Gas Combined Cycles with Post-Combustion CO 2 Absorption, Including a Detailed Evaluation of the Development Potential . Int. J. Greenhouse Gas Control 2007 , 1 , 396 ? 417 . 10.1016/S1750-5836(07)00068-0 . 

  9. Oh H. T. ; Ju Y. ; Chung K. ; Lee C. H. Techno-Economic Analysis of Advanced Stripper Configurations for Post-Combustion CO 2 Capture Amine Processes . Energy 2020 , 206 , 118164 10.1016/j.energy.2020.118164 . 

  10. Ju Y. ; Oh H. T. ; Lee C. H. Sensitivity Analysis of CO 2 Capture Process in Cyclic Fluidized-Bed with Regeneration of Solid Sorbent . Chem. Eng. J. 2020 , 379 , 122291 10.1016/j.cej.2019.122291 . 

  11. Ju Y. ; Lee C. H. Dynamic Modeling of a Dual Fluidized-Bed System with the Circulation of Dry Sorbent for CO 2 Capture . Appl. Energy 2019 , 241 , 640 ? 651 . 10.1016/j.apenergy.2019.03.070 . 

  12. Berstad D. ; Anantharaman R. ; Blom R. ; Jordal K. ; Arstad B. NGCC Post-Combustion CO 2 Capture with Ca/Carbonate Looping: Efficiency Dependency on Sorbent Properties, Capture Unit Performance and Process Configuration . Int. J. Greenhouse Gas Control 2014 , 24 , 43 ? 53 . 10.1016/j.ijggc.2014.02.015 . 

  13. Cormos C. C. Assessment of Chemical Absorption/Adsorption for Post-Combustion CO 2 Capture from Natural Gas Combined Cycle (NGCC) Power Plants . Appl. Therm. Eng. 2015 , 82 , 120 ? 128 . 10.1016/j.applthermaleng.2015.02.054 . 

  14. Liu Y. ; Guo Q. ; Cheng Y. ; Ryu H. J. Reaction Mechanism of Coal Chemical Looping Process for Syngas Production with CaSO 4 Oxygen Carrier in the CO 2 Atmosphere . Ind. Eng. Chem. Res. 2012 , 51 , 10364 ? 10373 . 10.1021/ie3009499 . 

  15. Liu Y. ; Jia W. ; Guo Q. ; Ryu H. Effect of Gasifying Medium on the Coal Chemical Looping Gasification with CaSO4 as Oxygen Carrier . Chin. J. Chem. Eng. 2014 , 22 , 1208 ? 1214 . 10.1016/j.cjche.2014.09.011 . 

  16. Guo Q. ; Hu X. ; Liu Y. ; Jia W. ; Yang M. ; Wu M. ; Tian H. ; Ryu H. J. Coal Chemical-Looping Gasification of Ca-Based Oxygen Carriers Decorated by CaO . Powder Technol. 2015 , 275 , 60 ? 68 . 10.1016/j.powtec.2015.01.061 . 

  17. Ryu H.-J. ; Lee D. ; Nam H. ; Jo S.-H. ; Baek J.-I. Solid Circulation Characteristics of Two Oxygen Carriers for Chemical Looping Combustion System . Trans. Korean Hydrogen New Energy Soc. 2018 , 29 , 393 ? 400 . 10.7316/KHNES.2018.29.4.393 . 

  18. Idziak K. ; Czakiert T. ; Krzywanski J. ; Zylka A. ; Kozlowska M. ; Nowak W. Safety and Environmental Reasons for the Use of Ni-, Co-, Cu-, Mn- and Fe-Based Oxygen Carriers in CLC/CLOU Applications: An Overview . Fuel 2020 , 268 , 117245 10.1016/j.fuel.2020.117245 . 

  19. Cho P. ; Mattisson T. ; Lyngfelt A. Comparison of Iron-, Nickel-, Copper- and Manganese-Based Oxygen Carriers for Chemical-Looping Combustion . Fuel 2004 , 83 , 1215 ? 1225 . 10.1016/j.fuel.2003.11.013 . 

  20. Mantripragada H. C. ; Rubin E. S. Performance Model for Evaluating Chemical Looping Combustion (CLC) Processes for CO 2 Capture at Gas-Fired Power Plants . Energy Fuels 2016 , 30 , 2257 ? 2267 . 10.1021/acs.energyfuels.5b02441 . 

  21. Schnellmann M. A. ; Heuberger C. F. ; Scott S. A. ; Dennis J. S. ; Mac Dowell N. Quantifying the Role and Value of Chemical Looping Combustion in Future Electricity Systems via a Retrosynthetic Approach . Int. J. Greenhouse Gas Control 2018 , 73 , 1 ? 15 . 10.1016/j.ijggc.2018.03.016 . 

  22. Fernandez J. R. ; Abanades J. C. Conceptual Design of a Ni-Based Chemical Looping Combustion Process Using Fixed-Beds . Appl. Energy 2014 , 135 , 309 ? 319 . 10.1016/j.apenergy.2014.08.069 . 

  23. Lee W. S. ; Lee J. C. ; Oh H. T. ; Baek S. W. ; Oh M. ; Lee C. H. Performance, Economic and Exergy Analyses of Carbon Capture Processes for a 300 MW Class Integrated Gasification Combined Cycle Power Plant . Energy 2017 , 134 , 731 ? 742 . 10.1016/j.energy.2017.06.059 . 

  24. Scott M. Technical Economic Analysis Guide?DRAFT ; U.S. Department of Energy , 2015 . 

  25. Petriz-Prieto M. A. ; Rico-Ramirez V. ; Gonzalez-Alatorre G. ; Gomez-Castro F. I. ; Diwekar U. M. A Comparative Simulation Study of Power Generation Plants Involving Chemical Looping Combustion Systems . Comput. Chem. Eng. 2016 , 84 , 434 ? 445 . 10.1016/j.compchemeng.2015.10.002 . 

  26. Ogidiama O. V. ; Abu-Zahra M. R. M. ; Shamim T. Techno-Economic Analysis of a Poly-Generation Solar-Assisted Chemical Looping Combustion Power Plant . Appl. Energy 2018 , 228 , 724 ? 735 . 10.1016/j.apenergy.2018.06.091 . 

  27. Rubin E. S. ; Davison J. E. ; Herzog H. J. The Cost of CO 2 Capture and Storage . Int. J. Greenhouse Gas Control 2015 , 40 , 378 ? 400 . 10.1016/j.ijggc.2015.05.018 . 

  28. Mathieu P. ; Bolland O. Comparison of Costs for Natural Gas Power Generation with CO 2 Capture . Energy Procedia 2013 , 37 , 2406 ? 2419 . 10.1016/j.egypro.2013.06.122 . 

  29. Porrazzo R. ; White G. ; Ocone R. Techno-Economic Investigation of a Chemical Looping Combustion Based Power Plant . Faraday Discuss. 2016 , 192 , 437 ? 457 . 10.1039/c6fd00033a . 27538703 

  30. Sit S. P. ; Reed A. ; Hohenwarter U. ; Horn V. ; Marx K. ; Proell T. Cenovus 10 MW CLC Field Pilot . Energy Procedia 2013 , 37 , 671 ? 676 . 10.1016/j.egypro.2013.05.155 . 

  31. Naqvi R. Analysis of Natural Gas-Fired Power Cycles with Chemical Looping Combustion for CO 2 Capture . Doctoral Thesis , Norwegian University of Science and Technology , 2006 . 

  32. Petrakopoulou F. ; Tsatsaronis G. ; Morosuk T. Conventional Exergetic and Exergoeconomic Analyses of a Power Plant with Chemical Looping Combustion for CO 2 Capture . Int. J. Thermodynamics 2010 , 13 , 77 ? 86 . 

  33. He Z. ; Ricardez-Sandoval L. A. Dynamic Modelling of a Commercial-Scale CO 2 Capture Plant Integrated with a Natural Gas Combined Cycle (NGCC) Power Plant . Int. J. Greenhouse Gas Control 2016 , 55 , 23 ? 35 . 10.1016/j.ijggc.2016.11.001 . 

  34. Marx K. ; Bertsch O. ; Proll T. ; Hofbauer H. Next Scale Chemical Looping Combustion: Process Integration and Part Load Investigations for a 10 MW Demonstration Unit . Energy Procedia 2013 , 37 , 635 ? 644 . 10.1016/j.egypro.2013.05.151 . 

  35. Mantripragada H. C. ; Rubin E. S. Chemical Looping for Pre-Combustion and Post-Combustion CO 2 Capture . Energy Procedia 2017 , 114 , 6403 ? 6410 . 10.1016/j.egypro.2017.03.1776 . 

  36. IECM Technical Documentation: Chemical Looping Combustion for Pre-Combustion CO 2 Capture ; 2012 . 

  37. Valderrama J. O. ; Silva A. Modified Soave-Redlich-Kwong Equations of State Applied to Mixtures Containing Supercritical Carbon Dioxide . Korean J. Chem. Eng. 2003 , 20 , 709 ? 715 . 10.1007/BF02706913 . 

  38. de Beer J. ; Depew C. The Role of Process Engineering in the Digital Transformation . Comput. Chem. Eng. 2021 , 107423 10.1016/j.compchemeng.2021.107423 . 

  39. http://mafra-win.korcham.net/Service/appl/index.asp (accessed 2021-04-27). 

  40. Lee J. C. ; Lee H. H. ; Joo Y. J. ; Lee C. H. ; Oh M. Process Simulation and Thermodynamic Analysis of an IGCC (Integrated Gasification Combined Cycle) Plant with an Entrained Coal Gasifier . Energy 2014 , 64 , 58 ? 68 . 10.1016/j.energy.2013.11.069 . 

  41. Winterton R. H. S. Steam Cycles . In Thermal Design of Nuclear Reactors ; Elsevier , 1981 , pp 146 ? 162 . 10.1016/b978-0-08-024215-6.50013-9 

  42. Cost Estimating & Project Controls , Cost Engineering . https://www.costengineering.eu/ (accessed 2021-04-27). 

  43. Bruck M. ; Sandborn P. ; Goudarzi N. A Levelized Cost of Energy (LCOE) Model for Wind Farms That Include Power Purchase Agreements (PPAs) . Renewable Energy 2018 , 122 , 131 ? 139 . 10.1016/j.renene.2017.12.100 . 

  44. DOE NETL Cost and Performance Baseline for Fossil Energy Plants; Volume 3c: Natural Gas Combined Cycle at Elevation ; 2011 . 

  45. Copeland R. J. ; Alptekin G. ; Cesario M. ; Gebhard S. ; Gershanovich Y. A Novel CO 2 Separation System ; Federal Energy Technology Center : Pittsburgh, PA, and Morgantown, WV , 1999 . 10.2172/766698 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로