$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Design and Evaluation of Two-Stage Membrane-Separation Processes for Propylene–Propane Mixtures 원문보기

Membranes, v.12 no.2, 2022년, pp.163 -   

Yamaki, Takehiro ,  Thuy, Nguyen ,  Hara, Nobuo ,  Taniguchi, Satoshi ,  Kataoka, Sho

Abstract AI-Helper 아이콘AI-Helper

Propylene is industrially produced in a mixture with propane and generally separated from the mixture via distillation. However, because distillation is an energy-consuming process, a more efficient separation process should be developed to mitigate both carbon dioxide (CO2) emissions and production...

주제어

참고문헌 (45)

  1. 1. Centi G. Quadrelli E.A. Perathoner S. Catalysis for CO 2 conversion: A key technology for rapid introduction of renewable energy in the value chain if chemical industries Energy Environ. Sci. 2013 6 1711 1731 10.1039/c3ee00056g 

  2. 2. Tanizume S. Yoshimura T. Ishii K. Nomura M. Control of sequential MTO reactions through an MFI-type zeolite membrane contactor Membranes 2020 10 26 10.3390/membranes10020026 32046126 

  3. 3. Yarulina I. Chowdhury A.D. Meirer F. Weckhuysen B.M. Gascon J. Recent trends and fundamental insights in the methanol-to-hydrocarbons process Nat. Cat. 2018 1 398 411 10.1038/s41929-018-0078-5 

  4. 4. Ebadzadeh E. Khademi M.H. Beheshti M. A kinetic model for methanol-to-propylene process in the presence of co-feeding of C 4 -C 5 olefine mixture over H-ZSM-5 catalysis Chem. Eng. J. 2021 405 126605 10.1016/j.cej.2020.126605 

  5. 5. Vajda S. Pellin M.J. Greeley J.P. Marshall C.L. Curtiss L.A. Ballentine G.A. Elam J.W. Catillon-Mucherie S. Redfern P.C. Mehmood F. Subnanometer platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane Nat. Mater. 2009 8 213 216 10.1038/nmat2384 19202544 

  6. 6. Amghizar I. Vandewalle L.A. Van Geem K.M. Marin G.B. New trends in olefin production Engineering 2017 3 171 178 10.1016/J.ENG.2017.02.006 

  7. 7. Chen L. Ye Q. Jiang Z. Yuan J. Zhang H. Wang N. Novel methodology for determining the optimal vapor recompressed assisted distillation process based on economic and energy efficiency Sep. Purif. Technol. 2020 251 117393 10.1016/j.seppur.2020.117393 

  8. 8. Christopher C.C.E. Dutta A. Farooq S. Karimi I.A. Process synthesis and optimization of propylene/propane separation using vapor recompression and self-heat recuperation Ind. Eng. Chem. Res. 2017 56 14557 14564 10.1021/acs.iecr.7b03432 

  9. 9. Li H. Cong H. Li X. Li X. Gao X. Systematic design of the integration heat pump into heat integrated distillation column for recovering energy Appl. Therm. Eng. 2016 105 93 104 10.1016/j.applthermaleng.2016.05.141 

  10. 10. Alcántara-Avila J.R. Gómez-Castro F.I. Segovia-Hernández J.G. Sotowa K. Horikawa T. Optimal design of cryogenic distillation columns with side heat pumps for the propylene/propane separation Chem. Eng. Process. 2014 82 112 122 10.1016/j.cep.2014.06.006 

  11. 11. Kumar V. Anand A. Kaistha N. Design and control of a vapour recompression c3 splitter Chem. Eng. Res. Des. 2020 159 410 423 10.1016/j.cherd.2020.04.036 

  12. 12. Grande C.A. Poplow F. Rodrigues A.E. Vacuum pressure swing adsorption to produce polymer-grade propylene Sep. Sci. Technol. 2010 45 1252 1259 10.1080/01496391003652767 

  13. 13. Abedini H. Asgari M. Watt Coull M. Shariati A. Reza Khosravi-Nikou M. Efficient production of polymer-grade propylene from the propane/propylene binary mixture using Cu-MOF-74 framework Sep. Purif. Technol. 2021 276 119172 10.1016/j.seppur.2021.119172 

  14. 14. Sen T. Kawajiri Y. Realff M.J. Adsorption process intensification through structured packing: A modeling study using zeolite 13X and a mixture of propylene and propane in hollow-fiber and packed Beds Ind. Eng. Chem. Res. 2019 58 5750 5767 10.1021/acs.iecr.8b02189 

  15. 15. Dobladez J.A.D. Maté V.I. Á; Torrellas, S.Á; Larriba, M. Separation of the propane propylene mixture with high recovery by a dual PSA process Comput. Chem. Eng. 2020 136 106717 10.1016/j.compchemeng.2019.106717 

  16. 16. Kim J.J. Hong S.H. Park D. Chung K. Lee C.H. Separation of propane and propylene by desorbent swing adsorption using zeolite 13X and carbon dioxide Chem. Eng. J. 2021 410 128276 10.1016/j.cej.2020.128276 

  17. 17. Sholl D.S. Lively R.P. Seven chemical separations to change the world Nature 2016 532 435 437 10.1038/532435a 27121824 

  18. 18. Lee U. Kim J. Seok Chae I.S. Han C. Techno-economic feasibility study of membrane based propane/propylene separation process Chem. Eng. Process. 2017 119 62 72 10.1016/j.cep.2017.05.013 

  19. 19. Zarca R. Ortiz A. Gorri D. Biegler L.T. Ortiz I. Optimization of multistage olefin/paraffin membrane separation processes through rigorous modeling AIChE J. 2019 65 e16588 10.1002/aic.16588 

  20. 20. Alcheikhhamdoh Y. Pinnau I. Hoorfar M. Chem B. Propylene–propane separation using zeolitic-imidazolate framework (ZIF-8) Membranes: Process techno-commercial evaluation J. Membr. Sci. 2019 591 117252 10.1016/j.memsci.2019.117252 

  21. 21. Richard W.B. Membrane Technology and Applications 3rd ed. Wiley Hoboken, NJ, USA 2012 

  22. 22. Pressly T.G. Ng K.M. A break-even analysis of distillation-membrane hybrids AIChE J. 1998 44 93 105 10.1002/aic.690440111 

  23. 23. Zarca R. Ortiz A. Gorri D. Biegler L.T. Ortiz I. Optimized distillation coupled with state-of-the-art membranes for propylene purification J. Membr. Sci. 2018 556 321 328 10.1016/j.memsci.2018.04.016 

  24. 24. Yamaki T. Yoshimune M. Hara N. Negishi H. Heat-integrated hybrid membrane separation-distillation process for energy-efficient isopropyl alcohol dehydration J. Chem. Eng. Jpn. 2018 51 890 897 10.1252/jcej.18we039 

  25. 25. Tula A.K. Befort B. Garg N. Camarda K.V. Gani R. Sustainable process design & analysis of hybrid separations Comput. Chem. Eng. 2017 105 96 104 

  26. 26. Amedi H.R. Aghajani M. Economic estimation of various membranes and distillation for propylene and propane separation Ind. Eng. Chem. Res. 2018 57 4366 4376 10.1021/acs.iecr.7b04169 

  27. 27. Benali M. Aydin B. Ethane/Ethylene and Propane/Propylene Separation in Hybrid Membrane Distillation Systems: Optimization and Economic Analysis Sep. Purif. Technol. 2010 73 377 390 10.1016/j.seppur.2010.04.027 

  28. 28. Xu L. Rungta M. Brayden M.K. Martinez M.V. Stears B.A. Barbay G.A. Koros W.J. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane—Distillation processes for olefin/paraffin separations J. Membr. Sci. 2012 423–424 314 323 10.1016/j.memsci.2012.08.028 

  29. 29. Yamaki T. Yoshimune M. Hara N. Negishi H. Energy-saving performance of membrane separation and hybrid membrane separation distillation for propylene/propane binary systems J. Jpn. Petrol. Inst. 2019 62 80 86 10.1627/jpi.62.80 

  30. 30. Robeson L.M. The upper bound revisited J. Membr. Sci. 2008 320 390 400 10.1016/j.memsci.2008.04.030 

  31. 31. Ma X. Lin B.K. Wei X. Kniep J. Lin Y.S. Gamma-alumina supported carbon molecular sieve membrane for propylene/propane separation Ind. Eng. Chem. Res. 2013 52 4297 4305 10.1021/ie303188c 

  32. 32. Ma X. Lin Y.S. Wei X. Kniep J. Ultrathin Carbon Molecular Sieve Membrane for Propylene/Propane Separation AIChE J. 2016 62 491 499 10.1002/aic.15005 

  33. 33. Hayashi J. Mizuta H. Yamamoto M. Kusakabe K. Morooka S. Suh S.H. Separation of ethane/ethylene and propane/propylene systems with a carbonized BPDA-pp’ODA polyimide membrane Ind. Eng. Chem. Res. 1996 35 4176 4181 10.1021/ie960264n 

  34. 34. Guo M. Kanezashi M. Recent progress in a membrane-based technique for propylene/propane separation Membrane 2021 11 310 10.3390/membranes11050310 33922617 

  35. 35. Sakai M. Sasaki Y. Tomono T. Seshimo M. Matsukata M. Olefin Selective ag-exchange x-type zeolite membrane for propylene/propane and ethylene/ethane separation A.C.S. Appl. Mater. Interfaces 2019 11 4145 4151 

  36. 36. Pan Y. Li T. Lestari G. Lai Z. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes J. Membr. Sci. 2012 390–391 93 98 10.1016/j.memsci.2011.11.024 

  37. 37. Liu D. Ma X. Xi H. Lin Y.S. Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes J. Membr. Sci. 2014 451 85 93 10.1016/j.memsci.2013.09.029 

  38. 38. Tran N.T. Yu T. Kim J. Othman M.R. ZIF-8 tubular membrane for propylene purification: Effect of surface curvature and zinc salts on separation performance Sep. Purif. Technol. 2020 251 117354 10.1016/j.seppur.2020.117354 

  39. 39. Kwon H.T. Jeong H.K. In site synthesis of thin zeolite-imidazolate framework zif-8 membranes exhibiting exceptionally high propylene/propane separation J. Am. Chem. Soc. 2013 135 10763 10768 10.1021/ja403849c 23758578 

  40. 40. Kwon H.T. Jeong H.K. Improving propylene/propane separation performance of zeolitic-imidazolate framework zif-8 membranes Chem. Eng. Sci. 2015 124 20 26 10.1016/j.ces.2014.06.021 

  41. 41. Hara N. Yoshimune M. Negishi H. Haraya K. Hara S. Yamaguchi T. diffusive separation of propylene/propane with ZIF-8 membranes J. Membr. Sci. 2014 450 215 223 10.1016/j.memsci.2013.09.012 

  42. 42. IDEA Inventory Database for Environmental Analysis I.D.E.A Available online: http://tco2.com/app/com/page/IDEA.action?lc=en_US (accessed on 27 December 2021) 

  43. 43. Turton R. Bailie R.C. Whiting W.B. Shaeiwitz J.A. Bhattacharyya D. Analysis, Synthesis, and Design of Chemical Processes 4th ed. Person Education Inc. New York, NY, USA 2013 

  44. 44. Horiuchi K. Yanagimoto K. Kataoka K. Nakaiwa M. Iwakabe K. Matsuda K. Energy saving characteristics of the internally heat integrated distillation colum (HIDiC) pilot plant for multicomponent petroleum distillation J. Chem. Eng. Jpn. 2008 41 771 778 10.1252/jcej.08we017 

  45. 45. International Monetary Fund World Economic Outlook, A Long and Difficult Ascent 2020 OCT Available online: https://www.imf.org/en/Publications/WEO/Issues/2020/09/30/world-economic-outlook-october-2020 (accessed on 27 December 2021) 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로