$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Modeling and simulation for design and analysis of membrane-based separation processes

Computers & chemical engineering, v.148, 2021년, pp.107258 -   

Kancherla, Ravichand (Corresponding author.) ,  Nazia, Shaik ,  Kalyani, Swayampakula ,  Sridhar, Sundergopal

Abstract AI-Helper 아이콘AI-Helper

ABSTRACT Accurate and reliable mathematical models play a key role in membrane system design. Process simulators have been proven to be successful in modeling, simulate, and optimize various industrial processes. Most of the commercial simulators can be used to solve mathematical models based on me...

주제어

참고문헌 (208)

  1. Chem. Eng. Proc.: Proc. Intens. Abbas 44 9 999 2005 10.1016/j.cep.2004.12.001 Simulation and analysis of an industrial water desalination plant 

  2. Arabian J.Sci. & Eng. Abdurakhman 43 11 6261 2018 10.1007/s13369-018-3474-x Producing biodiesel from waste cooking oil with catalytic membrane reactor: process design and sensitivity analysis 

  3. Adv. Eng. Mater. Abetz 8 5 328 2006 10.1002/adem.200600032 Developments in membrane research: from material via process design to industrial application 

  4. Desal. Wat. Treat. Afrasiabi 9 1-3 189 2009 10.5004/dwt.2009.770 Optimum design of the RO membrane by using simulation techniques 

  5. Comput. Chem. Eng. Ahmad 36 119 2012 10.1016/j.compchemeng.2011.08.002 Process simulation and optimal design of a membrane separation system for CO2 capture from natural gas 

  6. J. Ind. Eng. Chem. Ahmad 21 1246 2015 10.1016/j.jiec.2014.05.041 Hollow fiber membrane model for gas separation: process simulation, experimental validation, and module characteristics study 

  7. J. Membr. Sci. Ahmad 430 44 2013 10.1016/j.memsci.2012.11.070 Temperature and pressure dependence of membrane permeance and its effect on process economics of hollow fiber gas separation system 

  8. Pacific Sci. Rev. A Ahsan 18 1 47 2016 Mathematical modeling of membrane gas separation using the finite difference method 

  9. Desalination Al-Najar 479 2020 10.1016/j.desal.2020.114323 Pressure and osmotically driven membrane processes: a review of the benefits and production of nano-enhanced membranes for desalination 

  10. Environ. Sci: Wat. Res. & Technol. Al-Obaidi 4 3 449 2018 Significant energy savings by optimizing membrane design in the multi-stage reverse osmosis wastewater treatment process 

  11. J. Food Eng. Al-Obaidi 214 47 2017 10.1016/j.jfoodeng.2017.06.020 Optimum design of a multi-stage reverse osmosis process for the production of highly concentrated apple juice 

  12. Comput. Chem. Eng. Alexander 24 2-7 1195 2000 10.1016/S0098-1354(00)00356-2 Process synthesis and optimisation tools for environmental design: methodology and structure 

  13. J. Membr. Sci. Alonso 110 2 151 1996 10.1016/0376-7388(95)00228-6 Modeling and simulation of integrated membrane processes for recovery of Cr (VI) with Aliquat 336 

  14. J. Clean. Prod. Alsarayreh 248 2020 10.1016/j.jclepro.2019.119220 Evaluation and minimization of energy consumption in a medium-scale reverse osmosis brackish water desalination plant 

  15. Desalination Altaee 291 101 2012 10.1016/j.desal.2012.01.028 Computational model for estimating reverse osmosis system design and performance: part-one binary feed solution 

  16. Desalination Altaee 273 2-3 391 2011 10.1016/j.desal.2011.01.056 An alternative design to dual-stage NF seawater desalination using high rejection brackish water membranes 

  17. Sep. Purif. Technol. Aschmoneit 233 2020 10.1016/j.seppur.2019.115975 OMSD-An open membrane system design tool 

  18. Desalination Ashoor 398 222 2016 10.1016/j.desal.2016.07.043 Principles and applications of direct contact membrane distillation (DCMD): a comprehensive review 

  19. Chem. Eng. Proc.: Proc. Intens. Babi 86 173 2014 10.1016/j.cep.2014.07.001 A process synthesis-intensification framework for the development of sustainable membrane-based operations 

  20. Comput. Chem. Eng. Babi 81 218 2015 10.1016/j.compchemeng.2015.04.030 Sustainable process synthesis- intensification 

  21. Baker 2012 Membrane Technology and Applications 

  22. Sep. Purif. Technol. Benali 73 3 377 2010 10.1016/j.seppur.2010.04.027 Ethane/ethylene and propane/propylene separation in hybrid membrane distillation systems: optimization and economic analysis 

  23. Petroleum Chem. Bernardo 50 4 271 2010 10.1134/S0965544110040043 Membrane gas separation progresses for process intensification strategy in the petrochemical industry 

  24. J. Membr. Sci. Bounaceur 523 77 2017 10.1016/j.memsci.2016.09.011 Rigorous variable permeability modeling and process simulation for the design of polymeric membrane gas separation units: MEMSIC simulation tool 

  25. Desalination Bucs 343 26 2014 10.1016/j.desal.2013.11.007 Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: a numerical study 

  26. Ind. Eng. Chem. Res. Cao 54 2 672 2015 10.1021/ie502874c Simulation of vacuum membrane distillation process for desalination with Aspen Plus 

  27. J. Membr. Sci. Cassard 565 402 2018 10.1016/j.memsci.2018.07.017 How to select the optimal membrane distillation system for industrial applications 

  28. Desalination Chang 249 1 380 2009 10.1016/j.desal.2008.11.026 Simulation of membrane distillation modules for desalination by developing user's model on Aspen Plus platform 

  29. Chee 65 05022 2018 E3S Web of Conferences Performance Evaluation of Reverse Osmosis Desalination Pilot Plants using ROSA Simulation Software 

  30. Cutlip 2008 Problem-solving in Chemical and Biochemical Engineering With POLYMATH 

  31. Chem. Eng. Res. Des. Dalane 142 257 2019 10.1016/j.cherd.2018.12.027 Subsea natural gas dehydration with membrane processes: simulation and process optimization 

  32. J. Natural Gas Sci.Eng. Darabkhani 50 128 2018 10.1016/j.jngse.2017.09.012 Design, process simulation, and construction of a 100kW pilot-scale CO2 membrane rig: improving in situ CO2 capture using selective exhaust gas recirculation (S-EGR) 

  33. Chem. Eng. Technol. Davis 25 7 717 2002 10.1002/1521-4125(20020709)25:7<717::AID-CEAT717>3.0.CO;2-N Simple gas permeation and pervaporation membrane unit operation models for process simulators 

  34. J. CO2 Utilization De Falco 22 33 2017 10.1016/j.jcou.2017.09.008 Membrane Reactor for one-step DME synthesis process: industrial plant simulation and optimization 

  35. Int.J Hydr. Ener. De Falco 42 10 6771 2017 10.1016/j.ijhydene.2017.02.047 Selective membrane application for the industrial one-step DME production process fed by CO2 rich streams: modeling and simulation 

  36. Food Res. Int. de Morais Coutinho 42 5-6 536 2009 10.1016/j.foodres.2009.02.010 State of art of the application of membrane technology to vegetable oils: a review 

  37. Delgado 2020 Solar desalination: Cases, synthesis, and Challenges 

  38. Dhiman 285 2020 Smart Cities-Opportunities and Challenges: Select Proceedings of ICSC 2019 Forward Osmosis (FO)-Exploring Niche in Various Applications: a Review 

  39. Processes Di Marcoberardino 7 2 86 2019 10.3390/pr7020086 Life Cycle Assessment and Economic Analysis of an Innovative Biogas Membrane Reformer for Hydrogen Production 

  40. 10.1016/j.energy.2010.04.051 Doherty, W., Reynolds, A., & Kennedy, D. (2010). Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus. Energy, 35(12), 4545-4555. DOI: 10.1016/j.energy.2010.04.051. 

  41. Desalination Dong 402 72 2017 10.1016/j.desal.2016.08.025 Open-source predictive simulators for scale-up of direct contact membrane distillation modules for seawater desalination 

  42. Ind. Eng. Chem. Res. Douglas 31 1 238 1992 10.1021/ie00001a034 Process synthesis for waste minimization 

  43. Douglas Vol. 1110 1988 

  44. Drioli, E., & Giorno, L. (Eds.). (2010). Comprehensive membrane science and engineering (Vol. 1). Newnes. 

  45. J. Membr. Sci. Duong 542 133 2017 10.1016/j.memsci.2017.08.007 Assessing the performance of solar thermal driven membrane distillation for seawater desalination by computer simulation 

  46. Eden 4460 1 2012 

  47. Edwards 2013 Process Simulation Dynamic Modelling & Control 

  48. J. Proc. Contr. Ekawati 13 8 717 2003 10.1016/S0959-1524(03)00003-9 The integration of the output controllability index within the dynamic operability framework in process system design 

  49. Comput. Chem. Eng. Eliceche 26 4-5 563 2002 10.1016/S0098-1354(01)00775-X Optimisation of azeotropic distillation columns combined with pervaporation membranes 

  50. Comput. Chem. Eng. Eliceche 24 9-10 2115 2000 10.1016/S0098-1354(00)00580-9 Optimal operation of selective membrane separation processes for wastewater treatment 

  51. Comput. Chem. Eng. Eliceche 26 4-5 555 2002 10.1016/S0098-1354(01)00776-1 Continuous operation of membrane processes for the treatment of industrial effluents 

  52. J. Membr. Sci. Engels 359 1-2 93 2010 10.1016/j.memsci.2010.01.048 Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties 

  53. Sep. Sci.Technol. Eumine Suk 41 4 595 2006 10.1080/01496390600552347 Membrane-based hybrid processes: a review 

  54. Comput. Chem. Eng. Evans 3 1-4 319 1979 10.1016/0098-1354(79)80053-8 ASPEN: an advanced system for process engineering 

  55. J. Membr. Sci. Eykens 498 353 2016 10.1016/j.memsci.2015.07.037 Influence of membrane thickness and process conditions on direct contact membrane distillation at different salinities 

  56. Comput. Chem. Eng. Fedorova 83 232 2015 10.1016/j.compchemeng.2015.02.010 Computer-aided modelling template: concept and application 

  57. AIChE J. Fermeglia 55 4 1065 2009 10.1002/aic.11730 Computer-aided design for sustainable industrial processes: specific tools and applications 

  58. FILMTEC™ reverse osmosis membranes technical manual (2020). Available on: https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/45-D01504-en.pdf, 77-117. 

  59. Fleming Vol. 1 2012 

  60. Foley 2013 Membrane filtration: a Problem-Solving Approach With MATLAB 

  61. Ingeniería e Investigación Fontalvo 34 2 39 2014 10.15446/ing.investig.v34n2.41621 Using user models in MatlabⓇ within the Aspen PlusⓇ interface with an ExcelⓇ link 

  62. Ind. Eng. Chem. Res. Fontalvo 44 14 5259 2005 10.1021/ie049225z Comparing pervaporation and vapor permeation hybrid distillation processes 

  63. RSC Adv. Franco 3 32 13027 2013 10.1039/c3ra23502e Multiscale modeling and numerical simulation of rechargeable lithium-ion batteries: concepts, methods, and challenges 

  64. Chem. Rev. Franco 119 7 4569 2019 10.1021/acs.chemrev.8b00239 Boosting rechargeable batteries R&D by multiscale modeling: myth or reality 

  65. J. Membr. Sci. Freger 178 1-2 185 2000 10.1016/S0376-7388(00)00516-0 Separation of concentrated organic/inorganic salt mixtures by nanofiltration 

  66. J. Membr. Sci. Gabrielli 526 118 2017 10.1016/j.memsci.2016.11.022 On the optimal design of membrane-based gas separation processes 

  67. Chem. Eng. Res. Des. Galvanin 105 107 2016 10.1016/j.cherd.2015.10.048 Optimal design of experiments for parameter identification in electrodialysis models 

  68. Comput. Chem. Eng. Garg 126 499 2019 10.1016/j.compchemeng.2019.04.030 Sustainable solutions by integrating process synthesis-intensification 

  69. BioChem. Eng. J. Gaykawad 124 54 2017 10.1016/j.bej.2017.04.010 Vapor permeation for ethanol recovery from fermentation off-gas 

  70. Appl. Energy Ghaffour 254 2019 10.1016/j.apenergy.2019.113698 Membrane distillation hybrids for water production and energy efficiency enhancement: a critical review 

  71. AIChE J. Gilassi 64 5 1766 2018 10.1002/aic.16044 Simulation of gas separation using partial element stage cut modeling of hollow fiber membrane modules 

  72. Appl. Therm. Eng. Gkanas 74 36 2015 10.1016/j.applthermaleng.2014.02.006 A complete transport validated model on a zeolite membrane for carbon dioxide permeance and capture 

  73. J. Chem. Technol. Biotechnol. Gonzalez 77 1 29 2002 10.1002/jctb.526 Modeling and simulation of a hybrid process (pervaporation-distillation) for the separation of azeotropic mixtures of alcohol-ether 

  74. Appl. Therm. Eng. González-Bravo 75 154 2015 10.1016/j.applthermaleng.2014.09.009 Optimal design of thermal membrane distillation systems with heat integration with process plants 

  75. Appl. Energy Griffin 227 587 2018 10.1016/j.apenergy.2017.08.010 Industrial energy use and carbon emissions reduction in the chemicals sector: a UK perspective 

  76. Appl. Energy Griffin 249 109 2019 10.1016/j.apenergy.2019.04.148 Industrial energy use and carbon emissions reduction in the iron and steel sector: a UK perspective 

  77. J. Membr. Sci. Guan 464 127 2014 10.1016/j.memsci.2014.03.054 Evaluation of hollow fiber-based direct contact and vacuum membrane distillation systems using aspen process simulation 

  78. Desalination Guan 366 80 2015 10.1016/j.desal.2015.01.013 Evaluation of heat utilization in the membrane distillation desalination system integrated with heat recovery 

  79. Desalination Guan 428 207 2018 10.1016/j.desal.2017.11.033 Modular matrix design for large-scale membrane distillation system via Aspen simulations 

  80. Ind. Eng. Chem. Res. Hägg 44 20 7668 2005 10.1021/ie050174v CO2 capture from natural gas-fired power plants by using membrane technology 

  81. Int J Hydrogen Energy Haghayegh 42 34 21944 2017 10.1016/j.ijhydene.2017.07.098 Modeling and simulation of a proton exchange membrane fuel cell using computational fluid dynamics 

  82. Desalination Hanemaaijer 168 355 2004 10.1016/j.desal.2004.07.019 MemstillⓇ-Low-cost membrane distillation technology for seawater desalination 

  83. Desal. Wat. Treat. Hasanizadeh 57 39 18109 2016 10.1080/19443994.2015.1094675 CFD simulation of heat and mass transport for water transfer through the hydrophilic membrane in the direct-contact membrane distillation process 

  84. He 10249 2017 Process Systems and Materials for CO2 Capture: Modelling, Design, Control, and Integration Membrane System Design for CO2 Capture: from Molecular Modeling to Process Simulation 

  85. Energy Procedia He 1 1 261 2009 10.1016/j.egypro.2009.01.037 CO2 capture by hollow fiber carbon membranes: experiments and process simulations 

  86. J. Membr. Sci. He 378 1-2 1 2011 10.1016/j.memsci.2010.10.070 Hollow fiber carbon membranes: investigations for CO2 capture 

  87. Chem. Eng. J. He 268 1 2015 10.1016/j.cej.2014.12.105 Membrane system design and process feasibility analysis for CO2 capture from flue gas with a fixed-site-carrier membrane 

  88. Energy Sustain. Soc. He 8 1 34 2018 10.1186/s13705-018-0177-9 A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries 

  89. Sep. Purif. Technol. He 116993 2020 Conceptual Process Design and Simulation of Membrane Systems for Integrated Natural Gas Dehydration and Sweetening 

  90. Comput. Chem. Eng. Hillestad 10 4 377 1986 10.1016/0098-1354(86)87008-9 Dynamic simulation of chemical engineering systems by the sequential modular approach 

  91. Sep. Purif. Technol. Hinkova 26 1 101 2002 10.1016/S1383-5866(01)00121-6 Potentials of separation membranes in the sugar industry 

  92. Desalination Hitsov 436 125 2018 10.1016/j.desal.2018.01.038 Economic modelling and model-based process optimization of membrane distillation 

  93. J. Membr. Sci. Hömmerich 146 1 53 1998 10.1016/S0376-7388(98)00085-4 Design and optimization of combined pervaporation/distillation processes for the production of MTBE 

  94. Comput. Chem. Eng. Hoorfar 117 11 2018 10.1016/j.compchemeng.2018.05.013 A novel tool for the modeling, simulation, and costing of membrane-based gas separation processes using Aspen HYSYS: optimization of the CO2/CH4 separation process 

  95. Chem. Eng. Proc. Hosseinzadeh 111 35 2017 10.1016/j.cep.2016.08.002 Mathematical modeling for the simultaneous absorption of CO2 and SO2 using MEA in hollow fiber membrane contactors 

  96. J. Membr. Sci. Hussain 359 1-2 140 2010 10.1016/j.memsci.2009.11.035 A feasibility study of CO2 capture from flue gas by a facilitated transport membrane 

  97. J. Mech. Eng.Sci. Jourdani 11 3 2941 2017 10.15282/jmes.11.3.2017.14.0265 Numerical simulation of the performance of proton exchange membrane fuel cell with different membrane geometries 

  98. Kaldis 329 2018 Current Trends and Future Developments On (Bio-) Membranes Membrane Technology in IGCC Processes for Precombustion CO2 Capture 

  99. Desalination Karabelas 332 1 76 2014 10.1016/j.desal.2013.10.027 The effect of spiral wound membrane element design characteristics on its performance in steady-state desalination-A parametric study 

  100. Kargari 592 2015 Advances in Petroleum Engineering Application of membrane gas separation processes in petroleum industry 

  101. Khayet 2011 Membrane distillation: Principles and Applications 

  102. J. Membr. Sci. Kim 598 2020 10.1016/j.memsci.2019.117796 No-mixing-loss design of a multistage membrane carbon capture process for off-gas in thermal power plants 

  103. Comput. Chem. Eng. Kisala 11 6 567 1987 10.1016/0098-1354(87)87003-5 Sequential modular and simultaneous modular strategies for process flowsheet optimization 

  104. J. Membr. Sci. Ko 546 258 2018 10.1016/j.memsci.2017.09.040 Development of a dynamic simulation model of a hollow fiber membrane module to sequester CO2 from coalbed methane 

  105. J. Membr. Sci. Ko 546 270 2018 10.1016/j.memsci.2017.09.039 Optimization of hollow fiber membrane modules to sequester carbon dioxide from coalbed methane 

  106. Chem. Eng. Proc. Koch 67 2 2013 10.1016/j.cep.2012.09.013 Optimization-based design method for membrane-assisted separation processes 

  107. Open Chem. Koczka 5 4 1124 2007 10.2478/s11532-007-0050-8 Rigorous modeling and optimization of hybrid separation processes based on pervaporation 

  108. J. Comput. Mult. Flows Kone 9 1 3 2017 10.1177/1757482X17692341 Three-dimensional multiphase flow computational fluid dynamics models for proton exchange membrane fuel cell: a theoretical development 

  109. Prog.Poly. Sci. Koros 13 4 339 1988 10.1016/0079-6700(88)90002-0 Polymeric membrane materials for solution-diffusion based permeation separations 

  110. Desalination Kostoglou 316 91 2013 10.1016/j.desal.2013.01.033 Comprehensive simulation of flat-sheet membrane element performance in steady-state desalination 

  111. Chem. Eng. Sci. Krishna 52 6 861 1997 10.1016/S0009-2509(96)00458-7 The Maxwell-Stefan approach to mass transfer 

  112. Appl. Surf. Sci. Lakshmi 418 99 2017 10.1016/j.apsusc.2017.02.125 Comparative analysis of 2D and 3D model of a PEMFC in COMSOL 

  113. J. Membr. Sci. Lee 563 820 2018 10.1016/j.memsci.2018.06.057 Automated process design and optimization of membrane-based CO2 capture for a coal-based power plant 

  114. Desalination Lin 401 42 2017 10.1016/j.desal.2016.09.008 Kinetics and energetics trade-off in reverse osmosis desalination with different configurations 

  115. J. Membr. Sci. Lipnizki 153 2 183 1999 10.1016/S0376-7388(98)00253-1 Pervaporation-based hybrid process: a review of process design, applications, and economics 

  116. Fuel Cells Liu 6 5 376 2006 10.1002/fuce.200500104 Modeling of a PEM fuel cell system with propane ATR reforming 

  117. Ind.J. Sci.Technol. Lock 9 38 2016 A succession of States Mathematical Algorithm for Incorporation of Unit Operation in iCON® Process Simulator Applied in Natural Gas Purification 

  118. J. Ind. Eng. Chem. Lock 21 542 2015 10.1016/j.jiec.2014.03.017 Effect of recycle ratio on the cost of natural gas processing in countercurrent hollow fiber membrane system 

  119. Int J. Greenhouse Gas Control Lock 36 114 2015 10.1016/j.ijggc.2015.02.014 Modeling, simulation, and economic analysis of CO2 capture from natural gas using cocurrent, countercurrent, and radial crossflow hollow fiber membrane 

  120. Desalination Lokare 413 144 2017 10.1016/j.desal.2017.03.022 Integrating membrane distillation with waste heat from natural gas compressor stations for produced water treatment in Pennsylvania 

  121. Desalination Lokare 428 250 2018 10.1016/j.desal.2017.11.037 Importance of feed recirculation for the overall energy consumption in membrane distillation systems 

  122. Int. J. Chem. React. Eng. Lu 14 1 1 2016 10.1515/ijcre-2015-0050 Novel membrane reactor concepts for hydrogen production from hydrocarbons: a review 

  123. J. Food Process. Technol Marella 4 269 10 2013 Application of membrane separation technology for developing novel dairy food ingredients 

  124. Chem. Eng. Sci. Marriott 58 22 4975 2003 10.1016/j.ces.2003.07.005 A general approach to modeling membrane modules 

  125. Chem. Eng. Sci. Marriott 58 22 4991 2003 10.1016/j.ces.2003.07.011 The optimal design of membrane systems 

  126. Desalination Mazlan 377 138 2016 10.1016/j.desal.2015.08.011 Energy consumption for desalination-A comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes 

  127. Desalination Micari 453 77 2019 10.1016/j.desal.2018.11.022 Towards the first proof of the concept of a Reverse ElectroDialysis-Membrane Distillation Heat Engine 

  128. Comput. Chem. Eng. Mitkowski 33 3 551 2009 10.1016/j.compchemeng.2008.07.012 Computer aided design, analysis and experimental investigation of membrane assisted batch reaction-separation systems 

  129. Comput. Chem. Eng. Mohammadi 135 2020 10.1016/j.compchemeng.2020.106724 Optimal Membrane-Process Design (OMPD): a software product for the optimal design of membrane gas separation processes 

  130. Desalination Moore 437 108 2018 10.1016/j.desal.2018.03.005 Process modeling for economic optimization of a solar-driven sweeping gas membrane distillation desalination system 

  131. Desalination Nafey 194 1-3 281 2006 10.1016/j.desal.2005.09.032 A new visual package for the design and simulation of desalination processes 

  132. Env. Technol. Nandy 26 9 1055 2005 10.1080/09593332608618491 Application of chemical, biological and membrane separation processes in textile industry with recourse to zero effluent discharge-a case study 

  133. J. Membr. Sci. Niemi 102 185 1995 10.1016/0376-7388(94)00314-O Simulation of membrane separation by neural networks 

  134. Desalination Nisan 182 483 2005 10.1016/j.desal.2005.02.041 A new method for the treatment of the reverse osmosis process, with preheating of the feedwater 

  135. J. Korea Academia-Industrial Cooperation Soc. Noh 15 7 4698 2014 10.5762/KAIS.2014.15.7.4698 A Study on Carbon Dioxide Removal Process Using Composite Membrane in DME Production Process 

  136. Chem. Eng. Proc. Norkobilov 122 434 2017 10.1016/j.cep.2017.07.003 Comparative study of conventional, reactive-distillation, and pervaporation integrated hybrid process for ethyl tert-butyl ether production 

  137. J. Ind. Eng. Chem. Nosratinia 20 5 2958 2014 10.1016/j.jiec.2013.10.065 Mathematical modeling and numerical simulation of ammonia removal from wastewaters using membrane contactors 

  138. Novita 2018 the 3rd International Conference of Integrated Intellectual Community (ICONIC) A Hybrid Process Combining Reactive Distillation and Pervaporation Membrane for Dimethyl Ether Production from Crude Glycerol 

  139. Chem. Eng. Proc.: Proc. Intens. Osorio-Viana 76 70 2014 10.1016/j.cep.2013.12.005 Hybrid membrane and conventional processes comparison for isoamyl acetate production 

  140. Revista Mexicana de Ingeniería Química Palomeque-Santiago 15 2 611 2016 10.24275/rmiq/IP1238 Simulation of the natural gas purification process with membrane technology. Technical and economic aspects 

  141. Revista Mexicana de Ingeniería Química Palomeque-Santiago 17 3 1083 2018 10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/Palomeque Design of a membrane plant for gas sweetening based on new polyimide membranes 

  142. AIChE J Pan 29 4 545 1983 10.1002/aic.690290405 Gas separation by permeators with high-flux asymmetric membranes 

  143. J. Membr. Sci. Paul 241 2 371 2004 10.1016/j.memsci.2004.05.026 Reformulation of the solution-diffusion theory of reverse osmosis 

  144. Chem. Eng. Sci. Peshev 104 975 2013 10.1016/j.ces.2013.10.033 OSN Designer, a tool for predicting organic solvent nanofiltration technology performance using Aspen One, MATLAB, and CAPE-OPEN 

  145. Chem. Eng. J. Peters 172 2-3 952 2011 10.1016/j.cej.2011.07.007 CO2 removal from natural gas by employing amine absorption and membrane technology-A technical and economic analysis 

  146. Petrides 273 2019 Essentials in Fermentation Technology Bioprocess Simulation and Economics 

  147. Process Biochem. Phanthumchinda 68 205 2018 10.1016/j.procbio.2018.02.013 Process and cost modeling of lactic acid recovery from fermentation broths by the membrane-based process 

  148. Desalination Oh 238 128 2009 10.1016/j.desal.2008.01.043 A simplified simulation model of RO systems for seawater desalination 

  149. Processes Qadir 7 7 420 2019 10.3390/pr7070420 A Computational Fluid Dynamics Approach for the Modeling of Gas Separation in Membrane Modules 

  150. Desalination Qasim 459 59 2019 10.1016/j.desal.2019.02.008 Reverse osmosis desalination: a state-of-the-art review 

  151. Chem. Eng. Res. Des. Quek 132 1005 2018 10.1016/j.cherd.2018.01.033 Modeling for design and operation of high-pressure membrane contactors in natural gas sweetening 

  152. J. Membr. Sci. Ramírez-Santos 566 346 2018 10.1016/j.memsci.2018.08.024 Optimization of multistage membrane gas separation processes. Example of application to CO2 capture from blast furnace gas 

  153. Chem. Eng. Technol. Raoufi 41 2 278 2018 10.1002/ceat.201700303 An investigation into Ethanol Purification Using Polymeric Membranes and a Pervaporation Process 

  154. Chem. Eng. Technol. Rautenbach 19 391 1996 10.1002/ceat.270190502 Simulation and design of membrane plants with AspenPlus 

  155. Desalination Ravanchi 235 1-3 199 2009 10.1016/j.desal.2007.10.042 Application of membrane separation processes in petrochemical industry: a review 

  156. J. Membr. Sci. Ren 603 2020 10.1016/j.memsci.2020.117973 A computational fluid dynamics model to predict the performance of hollow fiber membrane modules in forward osmosis 

  157. Desalination Rezakazemi 285 383 2012 10.1016/j.desal.2011.10.030 Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor 

  158. Desalination Rezakazemi 443 323 2018 10.1016/j.desal.2017.12.048 CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system 

  159. Chem. Eng. Proc.: Proc. Intens. Rom 104 201 2016 10.1016/j.cep.2016.03.012 Energy saving potential of hybrid membrane and distillation process in butanol purification: experiments, modelling and simulation 

  160. Ind. Eng. Chem. Res. Scholz 52 3 1079 2013 10.1021/ie202689m Modeling gas permeation by linking nonideal effects 

  161. J. Membr. Sci. Scholz 484 107 2015 10.1016/j.memsci.2015.03.008 Dynamic process simulation and process control of biogas permeation processes 

  162. Seader 1998 Separation Process Principles 

  163. 2010 Membrane reactors: Distributing Reactants to Improve Selectivity and Yield 

  164. Sereewatthanawut 264 184 2008 Polymeric membrane nanofiltration and its application to separations in the chemical industries 

  165. Env. Technol. Šereš 193 2008 The Application of membrane separation processes as environmental friendly methods in the beet sugar production 

  166. Renew. Sustain. Energy Rev. Shalaby 73 789 2017 10.1016/j.rser.2017.01.170 Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: a review 

  167. 10.1515/cppm-2015-0067 Sharifian, S., Harasek, M., & Haddadi, B. (2016). Simulation of membrane gas separation process using Aspen PlusⓇ V8. 6. Chemical Product and Process Modeling, 11(1), 67-72. DOI: 10.1515/cppm-2015-0067. 

  168. 10.1002/9781119016311 Sharma, S., & Rangaiah, G.P. (2016). Mathematical modeling simulation and optimization for process design. Chemical process retrofitting and revamping: techniques and applications, 99-128. DOI: 10.1002/9781119016311.ch4. 

  169. Desalination Shirazi 377 73 2016 10.1016/j.desal.2015.09.010 Computational fluid dynamic (CFD) opportunities applied to the membrane distillation process: state-of-the-art and perspectives 

  170. Sigue 1 2019 2019 7th International Renewable and Sustainable Energy Conference (IRSEC) Simulators Selection for Design and Simulation of a CSP-Driven Forward Osmosis Process 

  171. Ind. Eng. Chem. Res. Skiborowski 53 40 15698 2014 10.1021/ie502482b Efficient optimization-based design of membrane-assisted distillation processes 

  172. Ind. Eng. Chem. Res. Sommer 43 17 5248 2004 10.1021/ie034194d Design and optimization of hybrid separation processes for the dehydration of 2-propanol and other organics 

  173. Energy Song 124 29 2017 10.1016/j.energy.2017.02.054 Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization 

  174. Comput. Chem. Eng. Soni 33 3 644 2009 10.1016/j.compchemeng.2008.08.004 A general model for membrane-based separation processes 

  175. Spiegel 2011 PEM Fuel Cell Modeling and Simulation Using MATLAB 

  176. 2018 Membrane Processes: Pervaporation, Vapor Permeation, and Membrane Distillation For Industrial Scale Separations 

  177. Chem. Eng. Proc. Steinigeweg 43 3 447 2004 10.1016/S0255-2701(03)00129-6 Transesterification processes by combination of reactive distillation and pervaporation 

  178. Desalination Suwaileh 485 2020 10.1016/j.desal.2020.114455 Forward osmosis membranes and processes: a comprehensive review of research trends and future outlook 

  179. Adv. Sci. Lett. Swain 22 2 551 2016 10.1166/asl.2016.6860 Design with Simulation on the Separation of Ethanol from Water and Ethanol Azeotropic Mixture Using Chemcad Software 

  180. Transfer Tabrizi 24 30 2019 Review of computational fluid dynamics simulation techniques for direct contact membrane distillation systems containing filament spacers 

  181. Arabian J. Chem. Tahvildari 9 1 72 2016 10.1016/j.arabjc.2015.02.022 Modeling and simulation of membrane separation process using computational fluid dynamics 

  182. J. Env. Health Sci. Eng. Talaeipour 15 1 18 2017 10.1186/s40201-017-0279-x An investigation of desalination by nanofiltration, reverse osmosis, and integrated (hybrid NF/RO) membranes employed in brackish water treatment 

  183. Desalination Tavakkoli 416 24 2017 10.1016/j.desal.2017.04.014 A techno-economic assessment of membrane distillation for the treatment of Marcellus shale produced water 

  184. Thomas, D. C., & Benson, S. M. (Eds.). (2015). Carbon Dioxide Capture For Storage in Deep Geologic Formations-Results from the CO2 Capture Project: Vol 1, 2. Elsevier. 

  185. Comput. Aided Chem. Eng. Tolksdorf 40 463 2017 10.1016/B978-0-444-63965-3.50079-9 Automatic Generation of Simulation Code for Embedding Custom Unit Operations in CAPE Software 

  186. Tolksdorf 38 787 2016 Taylor-Made Modeling and Solution of Novel Process Units by Modular CAPE-OPEN-based Flowsheeting 

  187. Comput. Chem. Eng. Tula 81 245 2015 10.1016/j.compchemeng.2015.04.019 Process synthesis, design, and analysis using a process-group contribution method 

  188. Comput. Chem. Eng. Tula 105 96 2017 10.1016/j.compchemeng.2016.11.031 Sustainable process design & analysis of hybrid separations 

  189. Comput. Chem. Eng. Tula 131 2019 10.1016/j.compchemeng.2019.106572 Hybrid method and associated tools for synthesis of sustainable process flowsheets 

  190. Chemie Ingenieur Technik van Baten 86 7 1052 2014 10.1002/cite.201400009 CAPE-OPEN: interoperability in Industrial Flowsheet Simulation Software 

  191. Chem. Eng. Proc.: Proc. Intens. Van Wyk 130 148 2018 10.1016/j.cep.2018.06.011 Pervaporative separation and intensification of downstream recovery of acetone-butanol-ethanol (ABE) 

  192. Chem. Soc. Rev. Vandezande 37 2 365 2008 10.1039/B610848M Solvent resistant nanofiltration: separating on a molecular level 

  193. Comput. Chem. Eng. Verhoef 32 6 1135 2008 10.1016/j.compchemeng.2007.04.014 Simulation of a hybrid pervaporation-distillation process 

  194. Chem. Eng. Res. Des. Vooradi 131 440 2018 10.1016/j.cherd.2017.12.019 Sustainable chemical processing and energy-carbon dioxide management: review of challenges and opportunities 

  195. Energy Conv. Manage. Wang 205 2020 10.1016/j.enconman.2019.112460 AI-based optimization of PEM fuel cell catalyst layers for maximum power density via data-driven surrogate modeling 

  196. Catal. Today Wang 104 2-4 160 2005 10.1016/j.cattod.2005.03.079 Oxidative coupling of methane in Ba0.5Sr0.5Co0.8Fe0.2O3−δ tubular membrane reactors 

  197. Desalination Wenten 391 112 2016 10.1016/j.desal.2015.12.011 Reverse osmosis applications: prospect and challenges 

  198. Wibisono 57 2020 Current Trends and Future Developments On (Bio-) Membranes Design of forward osmosis system 

  199. J. Membr. Sci. Wijmans 107 1 1995 10.1016/0376-7388(95)00102-I The solution-diffusion model: a review 

  200. 10.1002/047002903X.ch5 Wijmans, J.G., & Baker, R.W. (2006). The solution-diffusion model: a unified approach to membrane permeation. Materials science of membranes for gas and vapor separation, 1, 159-189. DOI: 10.1002/047002903X.ch5. 

  201. Int. J. Hydrog. Energy Wu 43 31 14451 2018 10.1016/j.ijhydene.2018.05.135 Design, modeling, and optimization of a lightweight MeOH-to-H2 processor 

  202. J. Membr. Sci. Xu 581 195 2019 10.1016/j.memsci.2019.03.052 Post-combustion CO2 capture with membrane process: practical membrane performance and appropriate pressure 

  203. J. Clean. Prod. Yang 2020 A critical survey on proton exchange membrane fuel cell parameter estimation using meta-heuristic algorithms 

  204. J. Membr. Sci. Zhao 359 1-2 160 2010 10.1016/j.memsci.2010.02.003 Multi-stage gas separation membrane processes used in post-combustion capture: energetic and economic analyses 

  205. Chem. Eng. Technol. Zhao 35 3 489 2012 10.1002/ceat.201100462 Cascaded Membrane Processes for Post-Combustion CO2 Capture 

  206. J. Membr. Sci. Zhao 325 1 284 2008 10.1016/j.memsci.2008.07.058 A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture 

  207. Int.J.Ener. Res. Zhou 41 6 877 2017 10.1002/er.3685 Design and optimization of an ammonia fuel processing unit for a stand-alone PEM fuel cell power generation system 

  208. Desalination Zuo 283 237 2011 10.1016/j.desal.2011.04.048 Energy efficiency evaluation and economic analyses of direct contact membrane distillation system using Aspen Plus 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로