최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기ACS biomaterials science & engineering, v.7 no.9, 2021년, pp.4128 - 4135
Lee, Hyun Jin (Department of Bio and Brain Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , South Korea) , Mun, Siwon (Department of Bio and Brain Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , South Korea) , Pham, Duc M. (Department of Bio and Brain Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , South Korea) , Kim, Pilnam
When embedded into a three-dimensional (3D) matrix, cancer stem cells (or cancer-initiating cells) can grow into self-organizing organotypic structures called tumor organoids. During organoid formation, the matrix not only provides structural support but also delivers biochemical signals. Although i...
Drost, Jarno, Clevers, Hans. Organoids in cancer research. Nature reviews. Cancer, vol.18, no.7, 407-418.
Sato, Toshiro, Vries, Robert G., Snippert, Hugo J., van de Wetering, Marc, Barker, Nick, Stange, Daniel E., van Es, Johan H., Abo, Arie, Kujala, Pekka, Peters, Peter J., Clevers, Hans. Single Lgr5 stem cells build crypt?villus structures in vitro without a mesenchymal niche. Nature, vol.459, no.7244, 262-265.
van de Wetering, M., Francies, Hayley E., Francis, Joshua M., Bounova, G., Iorio, F., Pronk, A., van Houdt, W., van Gorp, J., Taylor-Weiner, A., Kester, L., McLaren-Douglas, A., Blokker, J., Jaksani, S., Bartfeld, S., Volckman, R., van Sluis, P., Li, Vivian S.W., Seepo, S., Sekhar Pedamallu, C., Cibulskis, K., Carter, Scott L., McKenna, A., Lawrence, Michael S., Lichtenstein, L., Stewart, C., Koster, J., Versteeg, R., van Oudenaarden, A., Saez-Rodriguez, J., Vries, Robert G.J., Getz, G., Wessels, L., Stratton, Michael R., McDermott, U., Meyerson, M., Garnett, Mathew J., Clevers, H.. Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients. Cell, vol.161, no.4, 933-945.
Boj, Sylvia F., Hwang, C.I., Baker, Lindsey A., Chio, I., Engle, Dannielle D., Corbo, V., Jager, M., Ponz-Sarvise, M., Tiriac, H., Spector, Mona S., Gracanin, A., Oni, T., Yu, Kenneth H., van Boxtel, R., Huch, M., Rivera, Keith D., Wilson, John P., Feigin, Michael E., Ohlund, D., Handly-Santana, A., Ardito-Abraham, Christine M., Ludwig, M., Elyada, E., Alagesan, B., Biffi, G., Yordanov, Georgi N., Delcuze, B., Creighton, B., Wright, K., Park, Y., Morsink, Folkert H.M., Molenaar, I., Borel Rinkes, Inne H., Cuppen, E., Hao, Y., Jin, Y., Nijman, Isaac J., Iacobuzio-Donahue, C., Leach, Steven D., Pappin, Darryl J., Hammell, M., Klimstra, David S., Basturk, O., Hruban, Ralph H., Offerhaus, G., Vries, Robert G.J., Clevers, H., Tuveson, David A.. Organoid Models of Human and Mouse Ductal Pancreatic Cancer. Cell, vol.160, no.1, 324-338.
Sachs, Norman, de Ligt, Joep, Kopper, Oded, Gogola, Ewa, Bounova, Gergana, Weeber, Fleur, Balgobind, Anjali Vanita, Wind, Karin, Gracanin, Ana, Begthel, Harry, Korving, Jeroen, van Boxtel, Ruben, Duarte, Alexandra Alves, Lelieveld, Daphne, van Hoeck, Arne, Ernst, Robert Frans, Blokzijl, Francis, Nijman, Isaac Johannes, Hoogstraat, Marlous, van de Ven, Marieke, Egan, David Anthony, Zinzalla, Vittoria, Moll, Jurgen, Boj, Sylvia Fernandez, Voest, Emile Eugene, Wessels, Lodewyk, van Diest, Paul Joannes, Rottenberg, Sven, Vries, Robert Gerhardus Jacob, Cuppen, Edwin, Clevers, Hans. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell, vol.172, no.1, 373-386.e10.
Broutier, Laura, Mastrogiovanni, Gianmarco, Verstegen, Monique MA, Francies, Hayley E, Gavarró, Lena Morrill, Bradshaw, Charles R, Allen, George E, Arnes-Benito, Robert, Sidorova, Olga, Gaspersz, Marcia P, Georgakopoulos, Nikitas, Koo, Bon-Kyoung, Dietmann, Sabine, Davies, Susan E, Praseedom, Raaj K, Lieshout, Ruby, IJzermans, Jan N M, Wigmore, Stephen J, Saeb-Parsy, Kourosh, Garnett, Mathew J, van der Laan, Luc JW, Huch, Meritxell. Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nature medicine, vol.23, no.12, 1424-1435.
Yan, Helen H.N., Siu, Hoi Cheong, Law, Simon, Ho, Siu Lun, Yue, Sarah S.K., Tsui, Wai Yin, Chan, Dessy, Chan, April S., Ma, Stephanie, Lam, Ka On, Bartfeld, Sina, Man, Alice H.Y., Lee, Bernard C.H., Chan, Annie S.Y., Wong, Jason W.H., Cheng, Priscilla S.W., Chan, Anthony K.W., Zhang, Jiangwen, Shi, Jue, Fan, Xiaodan, Kwong, Dora L.W., Mak, Tak W., Yuen, Siu Tsan, Clevers, Hans, Leung, Suet Yi. A Comprehensive Human Gastric Cancer Organoid Biobank Captures Tumor Subtype Heterogeneity and Enables Therapeutic Screening. Cell stem cell, vol.23, no.6, 882-897.e11.
Kopper, Oded, de Witte, Chris J., Lõhmussaar, Kadi, Valle-Inclan, Jose Espejo, Hami, Nizar, Kester, Lennart, Balgobind, Anjali Vanita, Korving, Jeroen, Proost, Natalie, Begthel, Harry, van Wijk, Lise M., Revilla, Sonia Aristín, Theeuwsen, Rebecca, van de Ven, Marieke, van Roosmalen, Markus J., Ponsioen, Bas, Ho, Victor W. H., Neel, Benjamin G., Bosse, Tjalling, Gaarenstroom, Katja N., Vrieling, Harry, Vreeswijk, Maaike P. G., van Diest, Paul J., Witteveen, Petronella O., Jonges, Trudy, Bos, Johannes L., van Oudenaarden, Alexander, Zweemer, Ronald P., Snippert, Hugo J. G., Kloosterman, Wigard P., Clevers, Hans. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nature medicine, vol.25, no.5, 838-849.
Jacob, Fadi, Salinas, Ryan D., Zhang, Daniel Y., Nguyen, Phuong T.T., Schnoll, Jordan G., Wong, Samuel Zheng Hao, Thokala, Radhika, Sheikh, Saad, Saxena, Deeksha, Prokop, Stefan, Liu, Di-ao, Qian, Xuyu, Petrov, Dmitriy, Lucas, Timothy, Chen, H. Isaac, Dorsey, Jay F., Christian, Kimberly M., Binder, Zev A., Nasrallah, MacLean, Brem, Steven, O’Rourke, Donald M., Ming, Guo-li, Song, Hongjun. A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity. Cell, vol.180, no.1, 188-204.e22.
Kim, Minsuh, Mun, Hyemin, Sung, Chang Oak, Cho, Eun Jeong, Jeon, Hye-Joon, Chun, Sung-Min, Jung, Da Jung, Shin, Tae Hoon, Jeong, Gi Seok, Kim, Dong Kwan, Choi, Eun Kyung, Jeong, Seong-Yun, Taylor, Alison M., Jain, Sejal, Meyerson, Matthew, Jang, Se Jin. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nature communications, vol.10, no.1, 3991-.
Drost, Jarno, Karthaus, Wouter R., Gao, Dong, Driehuis, Else, Sawyers, Charles L., Chen, Yu, Clevers, Hans. Organoid culture systems for prostate epithelial tissue and prostate cancer tissue. Nature protocols, vol.11, no.2, 347-358.
Vlachogiannis, Georgios, Hedayat, Somaieh, Vatsiou, Alexandra, Jamin, Yann, Fernández-Mateos, Javier, Khan, Khurum, Lampis, Andrea, Eason, Katherine, Huntingford, Ian, Burke, Rosemary, Rata, Mihaela, Koh, Dow-Mu, Tunariu, Nina, Collins, David, Hulkki-Wilson, Sanna, Ragulan, Chanthirika, Spiteri, Inmaculada, Moorcraft, Sing Yu, Chau, Ian, Rao, Sheela, Watkins, David, Fotiadis, Nicos, Bali, Maria, Darvish-Damavandi, Mahnaz, Lote, Hazel, Eltahir, Zakaria, Smyth, Elizabeth C., Begum, Ruwaida, Clarke, Paul A., Hahne, Jens C., Dowsett, Mitchell, de Bono, Johann, Workman, Paul, Sadanandam, Anguraj, Fassan, Matteo, Sansom, Owen J., Eccles, Suzanne, Starling, Naureen, Braconi, Chiara, Sottoriva, Andrea, Robinson, Simon P., Cunningham, David, Valeri, Nicola. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, vol.359, no.6378, 920-926.
Weeber, Fleur, van de Wetering, Marc, Hoogstraat, Marlous, Dijkstra, Krijn K., Krijgsman, Oscar, Kuilman, Thomas, Gadellaa-van Hooijdonk, Christa G. M., van der Velden, Daphne L., Peeper, Daniel S., Cuppen, Edwin P. J. G., Vries, Robert G., Clevers, Hans, Voest, Emile E.. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proceedings of the National Academy of Sciences of the United States of America, vol.112, no.43, 13308-13311.
Masters, John R. W.. Human cancer cell lines: fact and fantasy. Nature reviews. Molecular cell biology, vol.1, no.3, 233-236.
Hutchinson, Lisa, Kirk, Rebecca. High drug attrition rates-where are we going wrong?. Nature reviews. Clinical oncology, vol.8, no.4, 189-190.
Weinstein, John N.. Drug discovery: Cell lines battle cancer. Nature, vol.483, no.7391, 544-545.
Nath, S., Devi, G.R.. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacology & therapeutics, vol.163, 94-108.
Meijer, Titia G, Naipal, Kishan AT, Jager, Agnes, van Gent, Dik C. Ex vivo tumor culture systems for functional drug testing and therapy response prediction. Future science OA, vol.3, no.2, FSO190-.
Kondo, Jumpei, Inoue, Masahiro. Application of Cancer Organoid Model for Drug Screening and Personalized Therapy. Cells, vol.8, no.5, 470-.
Lu, Pengfei, Weaver, Valerie M., Werb, Zena. The extracellular matrix: A dynamic niche in cancer progression. The Journal of cell biology, vol.196, no.4, 395-406.
Keely, Patricia J.. Mechanisms by Which the Extracellular Matrix and Integrin Signaling Act to Regulate the Switch Between Tumor Suppression and Tumor Promotion. Journal of mammary gland biology and neoplasia, vol.16, no.3, 205-219.
Sullivan, William J., Mullen, Peter J., Schmid, Ernst W., Flores, Aimee, Momcilovic, Milica, Sharpley, Mark S., Jelinek, David, Whiteley, Andrew E., Maxwell, Matthew B., Wilde, Blake R., Banerjee, Utpal, Coller, Hilary A., Shackelford, David B., Braas, Daniel, Ayer, Donald E., de Aguiar Vallim, Thomas Q., Lowry, William E., Christofk, Heather R.. Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization. Cell, vol.175, no.1, 117-132.e21.
Orkin, R W, Gehron, P, McGoodwin, E B, Martin, G R, Valentine, T, Swarm, R. A murine tumor producing a matrix of basement membrane.. The Journal of experimental medicine, vol.145, no.1, 204-220.
Corning Matrigel Matrix Frequently Asked Questions ; Corning: Corning, NY
User Guide: Geltrex LDEV-Free, hESC-Qualified, Reduced Growth Factor Basement Membrane Matrix ; Thermo Fisher Scientific: Waltham, MA
Aisenbrey, Elizabeth A., Murphy, William L.. Synthetic alternatives to Matrigel. Nature reviews. Materials, vol.5, no.7, 539-551.
Vukicevic, Slobodan, Kleinman, Hynda K., Luyten, Frank P., Roberts, Anita B., Roche, Nanette S., Reddi, A.H.. Identification of multiple active growth factors in basement membrane matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Experimental cell research, vol.202, no.1, 1-8.
Talbot, Neil C., Caperna, Thomas J.. Proteome array identification of bioactive soluble proteins/peptides in Matrigel: relevance to stem cell responses. Cytotechnology, vol.67, no.5, 873-883.
Slater, K.; Partridge, J.; Nadivada, H. Tuning the elastic moduli of Corning Matrigel and collagen I 3D matrices by varying the protein concentration . Corning. 2017.https://www.corning.com/media/worldwide/cls/documents/applications/CLS-AC-AN-449DL.pdf .
Kawano, Shingo, Kojima, Motohiro, Higuchi, Yoichi, Sugimoto, Motokazu, Ikeda, Koji, Sakuyama, Naoki, Takahashi, Shinichiro, Hayashi, Ryuichi, Ochiai, Atsushi, Saito, Norio. Assessment of elasticity of colorectal cancer tissue, clinical utility, pathological and phenotypical relevance. Cancer Science, vol.106, no.9, 1232-1239.
Samani, Abbas, Zubovits, Judit, Plewes, Donald. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Physics in medicine & biology, vol.52, no.6, 1565-1576.
Sodek, Katharine L, Brown, Theodore J, Ringuette, Maurice J. Collagen I but not Matrigel matrices provide an MMP-dependent barrier to ovarian cancer cell penetration. BMC cancer, vol.8, 223-223.
Fujii, Masayuki, Shimokawa, Mariko, Date, Shoichi, Takano, Ai, Matano, Mami, Nanki, Kosaku, Ohta, Yuki, Toshimitsu, Kohta, Nakazato, Yoshihiro, Kawasaki, Kenta, Uraoka, Toshio, Watanabe, Toshiaki, Kanai, Takanori, Sato, Toshiro. A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell stem cell, vol.18, no.6, 827-838.
Frantz, Christian, Stewart, Kathleen M., Weaver, Valerie M.. The extracellular matrix at a glance. Journal of cell science, vol.123, no.24, 4195-4200.
Szot, C.S., Buchanan, C.F., Freeman, J.W., Rylander, M.N.. 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials, vol.32, no.31, 7905-7912.
Caliari, Steven R, Burdick, Jason A. A practical guide to hydrogels for cell culture. Nature methods, vol.13, no.5, 405-414.
Xu, Yi, Gurusiddappa, Sivashankarappa, Rich, Rebecca L., Owens, Rick T., Keene, Douglas R., Mayne, Richard, Höök, Agneta, Höök, Magnus. Multiple Binding Sites in Collagen Type I for the Integrins α1β1 and α2β1. The Journal of biological chemistry, vol.275, no.50, 38981-38989.
Heino, Jyrki. The collagen family members as cell adhesion proteins. BioEssays, vol.29, no.10, 1001-1010.
Madame Curie Bioscience Database [Internet] Martin T. A. 2013
Liu, Hui, Lu, Tao, Kremers, Gert-Jan, Seynhaeve, Ann L. B., ten Hagen, Timo L. M.. A microcarrier-based spheroid 3D invasion assay to monitor dynamic cell movement in extracellular matrix. Biological procedures online, vol.22, no.1, 3-.
Sulzmaier, Florian J., Jean, Christine, Schlaepfer, David D.. FAK in cancer: mechanistic findings and clinical applications. Nature reviews. Cancer, vol.14, no.9, 598-610.
Wullkopf, Lena, West, Ann-Katrine V., Leijnse, Natascha, Cox, Thomas R., Madsen, Chris D., Oddershede, Lene B., Erler, Janine T.. Cancer cells’ ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Molecular biology of the cell, vol.29, no.20, 2378-2385.
Jang, Minjeong, Koh, Ilkyoo, Lee, Jae Eun, Lim, Ju Yeon, Cheong, Jae-Ho, Kim, Pilnam. Increased extracellular matrix density disrupts E-cadherin/β-catenin complex in gastric cancer cells. Biomaterials science, vol.6, no.10, 2704-2713.
Catoira, Marta Calvo, Fusaro, Luca, Di Francesco, Dalila, Ramella, Martina, Boccafoschi, Francesca. Overview of natural hydrogels for regenerative medicine applications. Journal of materials science, Materials in medicine, vol.30, no.10, 115-.
Cao, Huan, Lee, Melissa Kao Hui, Yang, Haibo, Sze, Siu Kwan, Tan, Nguan Soon, Tay, Chor Yong. Mechanoregulation of Cancer-Associated Fibroblast Phenotype in Three-Dimensional Interpenetrating Hydrogel Networks. Langmuir : the ACS journal of surfaces and colloids, vol.35, no.23, 7487-7495.
Jang, Minjeong, An, Jinhyeon, Oh, Seung Won, Lim, Joo Yeon, Kim, Joon, Choi, Jung Kyoon, Cheong, Jae-Ho, Kim, Pilnam. Matrix stiffness epigenetically regulates the oncogenic activation of the Yes-associated protein in gastric cancer. Nature biomedical engineering, vol.5, no.1, 114-123.
Koikawa, Kazuhiro, Ohuchida, Kenoki, Ando, Yohei, Kibe, Shin, Nakayama, Hiromichi, Takesue, Shin, Endo, Sho, Abe, Toshiya, Okumura, Takashi, Iwamoto, Chika, Moriyama, Taiki, Nakata, Kohei, Miyasaka, Yoshihiro, Ohtsuka, Takao, Nagai, Eishi, Mizumoto, Kazuhiro, Hashizume, Makoto, Nakamura, Masafumi. Basement membrane destruction by pancreatic stellate cells leads to local invasion in pancreatic ductal adenocarcinoma. Cancer letters, vol.425, 65-77.
Seino, Takashi, Kawasaki, Shintaro, Shimokawa, Mariko, Tamagawa, Hiroki, Toshimitsu, Kohta, Fujii, Masayuki, Ohta, Yuki, Matano, Mami, Nanki, Kosaku, Kawasaki, Kenta, Takahashi, Sirirat, Sugimoto, Shinya, Iwasaki, Eisuke, Takagi, Junichi, Itoi, Takao, Kitago, Minoru, Kitagawa, Yuko, Kanai, Takanori, Sato, Toshiro. Human Pancreatic Tumor Organoids Reveal Loss of Stem Cell Niche Factor Dependence during Disease Progression. Cell stem cell, vol.22, no.3, 454-467.e6.
Usui, Tatsuya, Sakurai, Masashi, Umata, Koji, Elbadawy, Mohamed, Ohama, Takashi, Yamawaki, Hideyuki, Hazama, Shoichi, Takenouchi, Hiroko, Nakajima, Masao, Tsunedomi, Ryouichi, Suzuki, Nobuaki, Nagano, Hiroaki, Sato, Koichi, Kaneda, Masahiro, Sasaki, Kazuaki. Hedgehog Signals Mediate Anti-Cancer Drug Resistance in Three-Dimensional Primary Colorectal Cancer Organoid Culture. International journal of molecular sciences, vol.19, no.4, 1098-.
Usui, Tatsuya, Sakurai, Masashi, Umata, Koji, Yamawaki, Hideyuki, Ohama, Takashi, Sato, Koichi. Preparation of Human Primary Colon Tissue‐Derived Organoid Using Air Liquid Interface Culture. Current protocols in toxicology, vol.75, no.1,
Neal, James T., Li, Xingnan, Zhu, Junjie, Giangarra, Valeria, Grzeskowiak, Caitlin L., Ju, Jihang, Liu, Iris H., Chiou, Shin-Heng, Salahudeen, Ameen A., Smith, Amber R., Deutsch, Brian C., Liao, Lillian, Zemek, Allison J., Zhao, Fan, Karlsson, Kasper, Schultz, Liora M., Metzner, Thomas J., Nadauld, Lincoln D., Tseng, Yuen-Yi, Alkhairy, Sahar, Oh, Coyin, Keskula, Paula, Mendoza-Villanueva, Daniel, De La Vega, Francisco M., Kunz, Pamela L., Liao, Joseph C., Leppert, John T., Sunwoo, John B., Sabatti, Chiara, Boehm, Jesse S., Hahn, William C., Zheng, Grace X.Y., Davis, Mark M., Kuo, Calvin J.. Organoid Modeling of the Tumor Immune Microenvironment. Cell, vol.175, no.7, 1972-1988.e16.
Dunne, L.W., Huang, Z., Meng, W., Fan, X., Zhang, N., Zhang, Q., An, Z.. Human decellularized adipose tissue scaffold as a model for breast cancer cell growth and drug treatments. Biomaterials, vol.35, no.18, 4940-4949.
Xing, Qi, Yates, Keegan, Tahtinen, Mitchell, Shearier, Emily, Qian, Zichen, Zhao, Feng. Decellularization of Fibroblast Cell Sheets for Natural Extracellular Matrix Scaffold Preparation. Tissue engineering. Part C, Methods, vol.21, no.1, 77-87.
Methods in Cell Biology Yong I. 205 156 2020
Romero-Lopez, M., Trinh, A.L., Sobrino, A., Hatch, M.M.S., Keating, M.T., Fimbres, C., Lewis, D.E., Gershon, P.D., Botvinick, E.L., Digman, M., Lowengrub, J.S., Hughes, C.C.W.. Recapitulating the human tumor microenvironment: Colon tumor-derived extracellular matrix promotes angiogenesis and tumor cell growth. Biomaterials, vol.116, 118-129.
Naba, Alexandra, Clauser, Karl R., Hoersch, Sebastian, Liu, Hui, Carr, Steven A., Hynes, Richard O.. The Matrisome: In Silico Definition and In Vivo Characterization by Proteomics of Normal and Tumor Extracellular Matrices. Molecular & cellular proteomics : MCP, vol.11, no.4, M111.014647-.
Naba, Alexandra, Clauser, Karl R, Whittaker, Charles A, Carr, Steven A, Tanabe, Kenneth K, Hynes, Richard O. Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver. BMC cancer, vol.14, 518-518.
Koh, IlKyoo, Cha, Junghwa, Park, Junseong, Choi, Junjeong, Kang, Seok-Gu, Kim, Pilnam. The mode and dynamics of glioblastoma cell invasion into a decellularized tissue-derived extracellular matrix-based three-dimensional tumor model. Scientific reports, vol.8, 4608-.
Koh, Ilkyoo, Kim, Pilnam. In Vitro Reconstruction of Brain Tumor Microenvironment. Biochip journal, vol.13, no.1, 1-7.
Tian, Xi, Werner, Michael E., Roche, Kyle C., Hanson, Ariel D., Foote, Henry P., Yu, Stephanie K., Warner, Samuel B., Copp, Jonathan A., Lara, Haydee, Wauthier, Eliane L., Caster, Joseph M., Herring, Laura E., Zhang, Longzhen, Tepper, Joel E., Hsu, David S., Zhang, Tian, Reid, Lola M., Wang, Andrew Z.. Organ-specific metastases obtained by culturing colorectal cancer cells on tissue-specific decellularized scaffolds. Nature biomedical engineering, vol.2, no.6, 443-452.
Li, Wenfang, Hu, Xueyan, Yang, Shuaitao, Wang, Shuping, Zhang, Chenghong, Wang, Hai, Cheng, Yuen Yee, Wang, Yiwei, Liu, Tianqing, Song, Kedong. A novel tissue-engineered 3D tumor model for anti-cancer drug discovery. Biofabrication, vol.11, no.1, 015004-.
Miyauchi, Yuya, Yasuchika, Kentaro, Fukumitsu, Ken, Ishii, Takamichi, Ogiso, Satoshi, Minami, Takahito, Kojima, Hidenobu, Yamaoka, Ryoya, Katayama, Hokahiro, Kawai, Takayuki, Yoshitoshi-Uebayashi, Elena Yukie, Kita, Sadahiko, Yasuda, Katsutaro, Sasaki, Naoya, Uemoto, Shinji. A novel three-dimensional culture system maintaining the physiological extracellular matrix of fibrotic model livers accelerates progression of hepatocellular carcinoma cells. Scientific reports, vol.7, 9827-.
Giobbe, Giovanni Giuseppe, Crowley, Claire, Luni, Camilla, Campinoti, Sara, Khedr, Moustafa, Kretzschmar, Kai, De Santis, Martina Maria, Zambaiti, Elisa, Michielin, Federica, Meran, Laween, Hu, Qianjiang, van Son, Gijs, Urbani, Luca, Manfredi, Anna, Giomo, Monica, Eaton, Simon, Cacchiarelli, Davide, Li, Vivian S. W., Clevers, Hans, Bonfanti, Paola, Elvassore, Nicola, De Coppi, Paolo. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nature communications, vol.10, no.1, 5658-.
Liao, Jie, Xu, Bo, Zhang, Ruihong, Fan, Yubo, Xie, Huiqi, Li, Xiaoming. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. Journal of materials chemistry. B, Materials for biology and medicine, vol.8, no.44, 10023-10049.
Ng, Shengyong, Tan, Wai Jin, Pek, Michelle Mi Xue, Tan, Min-Han, Kurisawa, Motoichi. Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture. Biomaterials, vol.219, 119400-.
Maloney, Erin, Clark, Casey, Sivakumar, Hemamylammal, Yoo, KyungMin, Aleman, Julio, Rajan, Shiny A. P., Forsythe, Steven, Mazzocchi, Andrea, Laxton, Adrian W., Tatter, Stephen B., Strowd, Roy E., Votanopoulos, Konstantinos I., Skardal, Aleksander. Immersion Bioprinting of Tumor Organoids in Multi-Well Plates for Increasing Chemotherapy Screening Throughput. Micromachines, vol.11, no.2, 208-.
Votanopoulos, Konstantinos I., Mazzocchi, Andrea, Sivakumar, Hemamylammal, Forsythe, Steven, Aleman, Julio, Levine, Edward A., Skardal, Aleksander. Appendiceal Cancer Patient-Specific Tumor Organoid Model for Predicting Chemotherapy Efficacy Prior to Initiation of Treatment: A Feasibility Study. Annals of surgical oncology, vol.26, no.1, 139-147.
Forsythe, Steven D., Sasikumar, Shyama, Moaven, Omeed, Sivakumar, Hemamylammal, Shen, Perry, Levine, Edward A., Soker, Shay, Skardal, Aleksander, Votanopoulos, Konstantinos I.. Personalized Identification of Optimal HIPEC Perfusion Protocol in Patient-Derived Tumor Organoid Platform. Annals of surgical oncology, vol.27, no.13, 4950-4960.
Wang, Christine, Tong, Xinming, Yang, Fan. Bioengineered 3D Brain Tumor Model To Elucidate the Effects of Matrix Stiffness on Glioblastoma Cell Behavior Using PEG-Based Hydrogels. Molecular pharmaceutics, vol.11, no.7, 2115-2125.
Temples, Madison N., Adjei, Isaac M., Nimocks, Phoebe M., Djeu, Julie, Sharma, Blanka. Engineered Three-Dimensional Tumor Models to Study Natural Killer Cell Suppression. ACS biomaterials science & engineering, vol.6, no.7, 4179-4199.
Balion, Zbigniev, Sipailaite, Emilija, Stasyte, Gabija, Vailionyte, Agne, Mazetyte-Godiene, Airina, Seskeviciute, Ieva, Bernotiene, Rasa, Phopase, Jaywant, Jekabsone, Aiste. Investigation of Cancer Cell Migration and Proliferation on Synthetic Extracellular Matrix Peptide Hydrogels. Frontiers in bioengineering and biotechnology, vol.8, 773-.
Fong, Eliza Li Shan, Lamhamedi-Cherradi, Salah-Eddine, Burdett, Emily, Ramamoorthy, Vandhana, Lazar, Alexander J., Kasper, F. Kurtis, Farach-Carson, Mary C., Vishwamitra, Deeksha, Demicco, Elizabeth G., Menegaz, Brian A., Amin, Hesham M., Mikos, Antonios G., Ludwig, Joseph A.. Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proceedings of the National Academy of Sciences of the United States of America, vol.110, no.16, 6500-6505.
Ho, Won Jin, Pham, Edward A., Kim, Jun W., Ng, Christopher W., Kim, Jae H., Kamei, Daniel T., Wu, Benjamin M.. Incorporation of multicellular spheroids into 3‐D polymeric scaffolds provides an improved tumor model for screening anticancer drugs. Cancer Science, vol.101, no.12, 2637-2643.
Loessner, Daniela, Stok, Kathryn S., Lutolf, Matthias P., Hutmacher, Dietmar W., Clements, Judith A., Rizzi, Simone C.. Bioengineered 3D platform to explore cell–ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials, vol.31, no.32, 8494-8506.
Zhu, Junmin, Marchant, Roger E. Design properties of hydrogel tissue-engineering scaffolds. Expert review of medical devices, vol.8, no.5, 607-626.
Beck, J.N., Singh, A., Rothenberg, A.R., Elisseeff, J.H., Ewald, A.J.. The independent roles of mechanical, structural and adhesion characteristics of 3D hydrogels on the regulation of cancer invasion and dissemination. Biomaterials, vol.34, no.37, 9486-9495.
Gjorevski, Nikolce, Sachs, Norman, Manfrin, Andrea, Giger, Sonja, Bragina, Maiia E., Ordóñez-Morán, Paloma, Clevers, Hans, Lutolf, Matthias P.. Designer matrices for intestinal stem cell and organoid culture. Nature, vol.539, no.7630, 560-564.
Crowder, Spencer W., Leonardo, V., Whittaker, T., Papathanasiou, P., Stevens, Molly M.. Material Cues as Potent Regulators of Epigenetics and Stem Cell Function. Cell stem cell, vol.18, no.1, 39-52.
Lv, Longwei, Tang, Yiman, Zhang, Ping, Liu, Yunsong, Bai, Xiangsong, Zhou, Yongsheng. Biomaterial Cues Regulate Epigenetic State and Cell Functions-A Systematic Review. Tissue engineering. Part B, Reviews, vol.24, no.2, 112-132.
Bourguignon, Lilly Y.W., Peyrollier, Karine, Xia, Weiliang, Gilad, Eli. Hyaluronan-CD44 Interaction Activates Stem Cell Marker Nanog, Stat-3-mediated MDR1 Gene Expression, and Ankyrin-regulated Multidrug Efflux in Breast and Ovarian Tumor Cells. The Journal of biological chemistry, vol.283, no.25, 17635-17651.
Pupa, Serenella M., Giuffré, Sarah, Castiglioni, Fabio, Bertola, Lorenzo, Cantú, Marco, Bongarzone, Italia, Baldassari, Paola, Mortarini, Roberta, Argraves, W. Scott, Anichini, Andrea, Menard, Sylvie, Tagliabue, Elda. Regulation of Breast Cancer Response to Chemotherapy by Fibulin-1. Cancer research : the official organ of the American Association for Cancer Research, Inc, vol.67, no.9, 4271-4277.
Zhou, Ya, Zhu, Yuanyuan, Fan, Xiaoyan, Zhang, Chundong, Wang, Yitao, Zhang, Lian, Zhang, Huan, Wen, Tao, Zhang, Kaina, Huo, Xiao, Jiang, Xue, Bu, Youquan, Zhang, Ying. NID1, a new regulator of EMT required for metastasis and chemoresistance of ovarian cancer cells. Oncotarget, vol.8, no.20, 33110-33121.
Liu, Bin, Xu, Tonghong, Xu, Xinning, Cui, Yuzhu, Xing, Xiaojing. Biglycan promotes the chemotherapy resistance of colon cancer by activating NF-κB signal transduction. Molecular and cellular biochemistry, vol.449, no.1, 285-294.
Votanopoulos, Konstantinos I., Forsythe, Steven, Sivakumar, Hemamylammal, Mazzocchi, Andrea, Aleman, Julio, Miller, Lance, Levine, Edward, Triozzi, Pierre, Skardal, Aleksander. Model of Patient-Specific Immune-Enhanced Organoids for Immunotherapy Screening: Feasibility Study. Annals of surgical oncology, vol.27, no.6, 1956-1967.
Hwang, Priscilla Y., Brenot, Audrey, King, Ashley C., Longmore, Gregory D., George, Steven C.. Randomly Distributed K14+ Breast Tumor Cells Polarize to the Leading Edge and Guide Collective Migration in Response to Chemical and Mechanical Environmental Cues. Cancer research : the official organ of the American Association for Cancer Research, Inc, vol.79, no.8, 1899-1912.
Usui, Tatsuya, Sakurai, Masashi, Enjoji, Shuhei, Kawasaki, Hideyoshi, Umata, Koji, Ohama, Takashi, Fujiwara, Nobuyuki, Yabe, Ryotaro, Tsuji, Shunya, Yamawaki, Hideyuki, Hazama, Shoichi, Takenouchi, Hiroko, Nakajima, Masao, Tsunedomi, Ryouichi, Suzuki, Nobuaki, Nagano, Hiroaki, Sato, Koichi. Establishment of a Novel Model for Anticancer Drug Resistance in Three-Dimensional Primary Culture of Tumor Microenvironment. Stem cells international, vol.2016, 7053872-.
Nayak, Biswadeep, Balachander, Gowri Manohari, Manjunath, Sathish, Rangarajan, Annapoorni, Chatterjee, Kaushik. Tissue mimetic 3D scaffold for breast tumor-derived organoid culture toward personalized chemotherapy. Colloids and surfaces. B, Biointerfaces, vol.180, 334-343.
Broguiere, Nicolas, Isenmann, Luca, Hirt, Christian, Ringel, Till, Placzek, Silja, Cavalli, Emma, Ringnalda, Femke, Villiger, Lukas, Züllig, Richard, Lehmann, Roger, Rogler, Gerhard, Heim, Markus H., Schüler, Julia, Zenobi‐Wong, Marcy, Schwank, Gerald. Growth of Epithelial Organoids in a Defined Hydrogel. Advanced materials, vol.30, no.43, 1801621-.
Fong, Eliza Li Shan, Toh, Tan Boon, Lin, Quy Xiao Xuan, Liu, Zheng, Hooi, Lissa, Mohd Abdul Rashid, Masturah Bte, Benoukraf, Touati, Chow, Edward Kai-Hua, Huynh, The Hung, Yu, Hanry. Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer. Biomaterials, vol.159, 229-240.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.