최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Sensors, v.21 no.13, 2021년, pp.4363 -
Nabwire, Shona (Department of Biosystems Engineering, Chungnam National University, Daejeon 34134, Korea) , Suh, Hyun-Kwon (nabwireshona@o.cnu.ac.kr) , Kim, Moon S. (Department of Life Resources Industry, Dong-A University, Busan 49315, Korea) , Baek, Insuck (Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Powder Mill Road, BARC-East, Bldg 303, Beltsville, MD 20705, USA) , Cho, Byoung-Kwan (moon.kim@usda.gov (M.S.K.))
Plant phenomics has been rapidly advancing over the past few years. This advancement is attributed to the increased innovation and availability of new technologies which can enable the high-throughput phenotyping of complex plant traits. The application of artificial intelligence in various domains ...
1. UN United Nations|Population Division Available online: https://www.un.org/development/desa/pd/ (accessed on 10 September 2020)
2. Costa C. Schurr U. Loreto F. Menesatti P. Carpentier S. Plant phenotyping research trends, a science mapping approach Front. Plant Sci. 2019 9 1 11 10.3389/fpls.2018.01933
3. Arvidsson S. Perez-Rodriguez P. Mueller-Roeber B. A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects New Phytol. 2011 191 895 907 10.1111/j.1469-8137.2011.03756.x 21569033
4. Furbank R.T. Plant phenomics: From gene to form and function Funct. Plant Biol. 2009 36 v vi 32688694
5. Houle D. Govindaraju D.R. Omholt S. Phenomics: The next challenge Nat. Rev. Genet. 2010 11 855 866 10.1038/nrg2897 21085204
6. Pauli D. High-throughput phenotyping technologies in cotton and beyond Proceedings of the Advances in Field-Based High-Throughput Phenotyping and Data Management: Grains and Specialty Crops Spokane, WA, USA 9?10 November 2015 1 11
7. White J.W. Andrade-Sanchez P. Gore M.A. Bronson K.F. Coffelt T.A. Conley M.M. Feldmann K.A. French A.N. Heun J.T. Hunsaker D.J. Field-based phenomics for plant genetics research Field Crops Res. 2012 133 101 112 10.1016/j.fcr.2012.04.003
8. Furbank R.T. Tester M. Phenomics―Technologies to relieve the phenotyping bottleneck Trends Plant Sci. 2011 16 635 644 10.1016/j.tplants.2011.09.005 22074787
9. Fahlgren N. Gehan M.A. Baxter I. Lights, camera, action: High-throughput plant phenotyping is ready for a close-up Curr. Opin. Plant Biol. 2015 24 93 99 10.1016/j.pbi.2015.02.006 25733069
10. Chen D. Neumann K. Friedel S. Kilian B. Chen M. Altmann T. Klukas C. Dissecting the phenotypic components of crop plant growthand drought responses based on high-throughput image analysis w open Plant Cell 2014 26 4636 4655 10.1105/tpc.114.129601 25501589
11. Walter T. Shattuck D.W. Baldock R. Bastin M.E. Carpenter A.E. Duce S. Ellenberg J. Fraser A. Hamilton N. Pieper S. Visualization of image data from cells to organisms Nat. Methods 2010 7 S26 S41 10.1038/nmeth.1431 20195255
12. Oerke E.C. Steiner U. Dehne H.W. Lindenthal M. Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions J. Exp. Bot. 2006 57 2121 2132 10.1093/jxb/erj170 16714311
13. Chaerle L. Pineda M. Romero-Aranda R. Van Der Straeten D. Baron M. Robotized thermal and chlorophyll fluorescence imaging of pepper mild mottle virus infection in Nicotiana benthamiana Plant Cell Physiol. 2006 47 1323 1336 10.1093/pcp/pcj102 16943218
14. Zarco-Tejada P.J. Berni J.A.J. Suarez L. Sepulcre-Canto G. Morales F. Miller J.R. Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection Remote Sens. Environ. 2009 113 1262 1275 10.1016/j.rse.2009.02.016
15. Jensen T. Apan A. Young F. Zeller L. Detecting the attributes of a wheat crop using digital imagery acquired from a low-altitude platform Comput. Electron. Agric. 2007 59 66 77 10.1016/j.compag.2007.05.004
16. Montes J.M. Utz H.F. Schipprack W. Kusterer B. Muminovic J. Paul C. Melchinger A.E. Near-infrared spectroscopy on combine harvesters to measure maize grain dry matter content and quality parameters Plant Breed. 2006 125 591 595 10.1111/j.1439-0523.2006.01298.x
17. Bai G. Ge Y. Hussain W. Baenziger P.S. Graef G. A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding Comput. Electron. Agric. 2016 128 181 192 10.1016/j.compag.2016.08.021
18. Chaerle L. Van Der Straeten D. Imaging techniques and the early detection of plant stress Trends Plant Sci. 2000 5 495 501 10.1016/S1360-1385(00)01781-7 11077259
20. Montes J.M. Melchinger A.E. Reif J.C. Novel throughput phenotyping platforms in plant genetic studies Trends Plant Sci. 2007 12 433 436 10.1016/j.tplants.2007.08.006 17719833
21. Casanova J.J. O’Shaughnessy S.A. Evett S.R. Rush C.M. Development of a wireless computer vision instrument to detect biotic stress in wheat Sensors 2014 14 17753 17769 10.3390/s140917753 25251410
22. Kruse O.M.O. Prats-Montalban J.M. Indahl U.G. Kvaal K. Ferrer A. Futsaether C.M. Pixel classification methods for identifying and quantifying leaf surface injury from digital images Comput. Electron. Agric. 2014 108 155 165 10.1016/j.compag.2014.07.010
23. Shakoor N. Lee S. Mockler T.C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field Curr. Opin. Plant Biol. 2017 38 184 192 10.1016/j.pbi.2017.05.006 28738313
24. Lecun Y. Bengio Y. Hinton G. Deep learning Nature 2015 521 436 444 10.1038/nature14539 26017442
25. Hardin P.J. Lulla V. Jensen R.R. Jensen J.R. Small Unmanned Aerial Systems (sUAS) for environmental remote sensing: Challenges and opportunities revisited GIScience Remote Sens. 2019 56 309 322 10.1080/15481603.2018.1510088
28. Madhavan K. Elmqvist N. Vorvoreanu M. Chen X. Wong Y. Xian H. Dong Z. Johri A. DIA2: Web-based cyberinfrastructure for visual analysis of funding portfolios IEEE Trans. Vis. Comput. Graph. 2014 20 1823 1832 10.1109/TVCG.2014.2346747 26356896
29. Goff S.A. Vaughn M. McKay S. Lyons E. Stapleton A.E. Gessler D. Matasci N. Wang L. Hanlon M. Lenards A. The iPlant collaborative: Cyberinfrastructure for plant biology Front. Plant Sci. 2011 2 1 16 10.3389/fpls.2011.00034 22639570
30. Aksulu A. Wade M. A comprehensive review and synthesis of open source research J. Assoc. Inf. Syst. 2010 11 576 656 10.17705/1jais.00245
31. Frankenfield J. Artificial Intelligence (AI) Available online: https://www.investopedia.com/terms/a/artificial-intelligence-ai.asp (accessed on 9 February 2021)
32. Paschen U. Pitt C. Kietzmann J. Artificial intelligence: Building blocks and an innovation typology Bus. Horiz. 2020 63 147 155 10.1016/j.bushor.2019.10.004
33. Frey L.J. Artificial intelligence and integrated genotype?Phenotype identification Genes 2019 10 18 10.3390/genes10010018
34. Zhuang Y.T. Wu F. Chen C. Pan Y. He Challenges and opportunities: From big data to knowledge in AI 2.0 Front. Inf. Technol. Electron. Eng. 2017 18 3 14 10.1631/FITEE.1601883
35. Roscher R. Bohn B. Duarte M.F. Garcke J. Explainable Machine Learning for Scientific Insights and Discoveries IEEE Access 2020 8 42200 42216 10.1109/ACCESS.2020.2976199
36. Singh A. Ganapathysubramanian B. Singh A.K. Sarkar S. Machine Learning for High-Throughput Stress Phenotyping in Plants Trends Plant Sci. 2016 21 110 124 10.1016/j.tplants.2015.10.015 26651918
37. Rahaman M.M. Ahsan M.A. Chen M. Data-Mining Techniques for Image-based Plant Phenotypic Traits Identification and Classification Sci. Rep. 2019 9 1 11 10.1038/s41598-019-55609-6 30626917
38. Huang K.Y. Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features Comput. Electron. Agric. 2007 57 3 11 10.1016/j.compag.2007.01.015
40. Sommer C. Gerlich D.W. Machine learning in cell biology-teaching computers to recognize phenotypes J. Cell Sci. 2013 126 5529 5539 10.1242/jcs.123604 24259662
41. Sadeghi-Tehran P. Sabermanesh K. Virlet N. Hawkesford M.J. Automated method to determine two critical growth stages of wheat: Heading and flowering Front. Plant Sci. 2017 8 1 14 10.3389/fpls.2017.00252 28220127
42. Brichet N. Fournier C. Turc O. Strauss O. Artzet S. Pradal C. Welcker C. Tardieu F. Cabrera-Bosquet L. A robot-assisted imaging pipeline for tracking the growths of maize ear and silks in a high-throughput phenotyping platform Plant Methods 2017 13 1 12 10.1186/s13007-017-0246-7 28053646
43. Wilf P. Zhang S. Chikkerur S. Little S.A. Wing S.L. Serre T. Computer vision cracks the leaf code Proc. Natl. Acad. Sci. USA 2016 113 3305 3310 10.1073/pnas.1524473113 26951664
44. Sabanci K. Toktas A. Kayabasi A. Grain classifier with computer vision usingadaptive neuro-fuzzy inference system.pdf J. Sci. Food Agric. 2017 97 3994 4000 10.1002/jsfa.8264 28194800
45. Sabanci K. Kayabasi A. Toktas A. Computer vision-based method for classification of wheat grains using artificial neural network J. Sci. Food Agric. 2017 97 2588 2593 10.1002/jsfa.8080 27718230
46. Lin P. Li X.L. Chen Y.M. He Y. A Deep Convolutional Neural Network Architecture for Boosting Image Discrimination Accuracy of Rice Species Food Bioprocess Technol. 2018 11 765 773 10.1007/s11947-017-2050-9
47. Singh A.K. Ganapathysubramanian B. Sarkar S. Singh A. Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives Trends Plant Sci. 2018 23 883 898 10.1016/j.tplants.2018.07.004 30104148
48. Pound M.P. Atkinson J.A. Townsend A.J. Wilson M.H. Griffiths M. Jackson A.S. Bulat A. Tzimiropoulos G. Wells D.M. Murchie E.H. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping GigaScience 2017 6 1 10 10.1093/gigascience/gix083 29020747
49. Fuentes A. Yoon S. Kim S.C. Park D.S. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition Sensors 2017 17 2022 10.3390/s17092022 28869539
50. Abdalla A. Cen H. Wan L. Rashid R. Weng H. Zhou W. He Y. Fine-tuning convolutional neural network with transfer learning for semantic segmentation of ground-level oilseed rape images in a field with high weed pressure Comput. Electron. Agric. 2019 167 105091 10.1016/j.compag.2019.105091
51. Espejo-Garcia B. Mylonas N. Athanasakos L. Vali E. Fountas S. Combining generative adversarial networks and agricultural transfer learning for weeds identification Biosyst. Eng. 2021 204 79 89 10.1016/j.biosystemseng.2021.01.014
52. Barbedo J.G.A. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification Comput. Electron. Agric. 2018 153 46 53 10.1016/j.compag.2018.08.013
53. Wang G. Sun Y. Wang J. Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning Comput. Intell. Neurosci. 2017 2017 10.1155/2017/2917536
54. Buzzy M. Thesma V. Davoodi M. Velni J.M. Real-time plant leaf counting using deep object detection networks Sensors 2020 20 6896 10.3390/s20236896
55. Ghosal S. Zheng B. Chapman S.C. Potgieter A.B. Jordan D.R. Wang X. Singh A.K. Singh A. Hirafuji M. Ninomiya S. A Weakly Supervised Deep Learning Framework for Sorghum Head Detection and Counting Plant Phenomics 2019 2019 1 14 10.34133/2019/1525874 33313521
58. Ghosal S. Blystone D. Singh A.K. Ganapathysubramanian B. Singh A. Sarkar S. An explainable deep machine vision framework for plant stress phenotyping Proc. Natl. Acad. Sci. USA 2018 115 4613 4618 10.1073/pnas.1716999115 29666265
59. Chaerle L. Van Der Straeten D. Seeing is believing: Imaging techniques to monitor plant health Biochim. Biophys. Acta Gene Struct. Expr. 2001 1519 153 166 10.1016/S0167-4781(01)00238-X
60. Perez-Sanz F. Navarro P.J. Egea-Cortines M. Plant phenomics: An overview of image acquisition technologies and image data analysis algorithms GigaScience 2017 6 1 18 10.1093/gigascience/gix092
61. Cen H. Weng H. Yao J. He M. Lv J. Hua S. Li H. He Y. Chlorophyll fluorescence imaging uncovers photosynthetic fingerprint of citrus Huanglongbing Front. Plant Sci. 2017 8 1 11 10.3389/fpls.2017.01509 28220127
62. Lichtenthaler H.K. Langsdorf G. Lenk S. Buschmann C. Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system Photosynthetica 2005 43 355 369 10.1007/s11099-005-0060-8
63. Ehlert B. Hincha D.K. Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves Plant Methods 2008 4 1 7 10.1186/1746-4811-4-12 18182106
64. Zheng H. Zhou X. He J. Yao X. Cheng T. Zhu Y. Cao W. Tian Y. Early season detection of rice plants using RGB, NIR-G-B and multispectral images from unmanned aerial vehicle (UAV) Comput. Electron. Agric. 2020 169 105223 10.1016/j.compag.2020.105223
65. Padmavathi K. Thangadurai K. Implementation of RGB and grayscale images in plant leaves disease detection―Comparative study Indian J. Sci. Technol. 2016 9 4 9 10.17485/ijst/2016/v9i6/77739
66. Wang X. Yang W. Wheaton A. Cooley N. Moran B. Automated canopy temperature estimation via infrared thermography: A first step towards automated plant water stress monitoring Comput. Electron. Agric. 2010 73 74 83 10.1016/j.compag.2010.04.007
67. Munns R. James R.A. Sirault X.R.R. Furbank R.T. Jones H.G. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit J. Exp. Bot. 2010 61 3499 3507 10.1093/jxb/erq199 20605897
68. Urrestarazu M. Infrared thermography used to diagnose the effects of salinity in a soilless culture Quant. InfraRed Thermogr. J. 2013 10 1 8 10.1080/17686733.2013.763471
69. Fittschen U.E.A. Kunz H.H. Hohner R. Tyssebotn I.M.B. Fittschen A. A new micro X-ray fluorescence spectrometer for in vivo elemental analysis in plants X-ray Spectrom. 2017 46 374 381 10.1002/xrs.2783
70. Chow T.H. Tan K.M. Ng B.K. Razul S.G. Tay C.M. Chia T.F. Poh W.T. Diagnosis of virus infection in orchid plants with high-resolution optical coherence tomography J. Biomed. Opt. 2009 14 014006 10.1117/1.3066900 19256694
71. Garbout A. Munkholm L.J. Hansen S.B. Petersen B.M. Munk O.L. Pajor R. The use of PET/CT scanning technique for 3D visualization and quantification of real-time soil/plant interactions Plant Soil 2012 352 113 127 10.1007/s11104-011-0983-8
72. A A. Malenovsky Z. Hanu? J. Toma?kova I. Urban O. Marek M.V. Near-distance imaging spectroscopy investigating chlorophyll fluorescence and photosynthetic activity of grassland in the daily course Funct. Plant Biol. 2009 36 1006 1015 10.1071/FP09154 32688712
73. Vigneau N. Ecarnot M. Rabatel G. Roumet P. Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat Field Crops Res. 2011 122 25 31 10.1016/j.fcr.2011.02.003
74. Behmann J. Steinrucken J. Plumer L. Detection of early plant stress responses in hyperspectral images ISPRS J. Photogramm. Remote Sens. 2014 93 98 111 10.1016/j.isprsjprs.2014.03.016
75. Prey L. von Bloh M. Schmidhalter U. Evaluating RGB imaging and multispectral active and hyperspectral passive sensing for assessing early plant vigor in winter wheat Sensors 2018 18 2931 10.3390/s18092931
76. Li L. Zhang Q. Huang D. A review of imaging techniques for plant phenotyping Sensors 2014 14 20078 20111 10.3390/s141120078 25347588
77. Han X.F. Laga H. Bennamoun M. Image-based 3D Object Reconstruction: State-of-the-Art and Trends in the Deep Learning Era IEEE Trans. Pattern Anal. Mach. Intell. 2019 43 1578 1604 10.1109/TPAMI.2019.2954885 31751229
78. Nguyen C.V. Fripp J. Lovell D.R. Furbank R. Kuffner P. Daily H. Sirault X. 3D scanning system for automatic high-resolution plant phenotyping Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA) Gold Coast, Australia 30 November?2 December 2016
79. Matovic M.D. Biomass: Detection, Production and Usage BoD―Books on Demand Norderstedt, Germany 2011 9533074922
80. Liu H. Bruning B. Garnett T. Berger B. Hyperspectral imaging and 3D technologies for plant phenotyping: From satellite to close-range sensing Comput. Electron. Agric. 2020 175 105621 10.1016/j.compag.2020.105621
81. Zhu H. Chu B. Fan Y. Tao X. Yin W. He Y. Hyperspectral Imaging for Predicting the Internal Quality of Kiwifruits Based on Variable Selection Algorithms and Chemometric Models Sci. Rep. 2017 7 1 13 10.1038/s41598-017-08509-6 28127051
82. Zhang M. Li G. Visual detection of apple bruises using AdaBoost algorithm and hyperspectral imaging Int. J. Food Prop. 2018 21 1598 1607 10.1080/10942912.2018.1503299
83. Gu Q. Sheng L. Zhang T. Lu Y. Zhang Z. Zheng K. Hu H. Zhou H. Early detection of tomato spotted wilt virus infection in tobacco using the hyperspectral imaging technique and machine learning algorithms Comput. Electron. Agric. 2019 167 105066 10.1016/j.compag.2019.105066
84. Ramesh V. A Review on the Application of Deep Learning in Thermography Int. J. Eng. Manag. Res. 2017 7 489 493
85. Pineda M. Baron M. Perez-Bueno M.L. Thermal imaging for plant stress detection and phenotyping Remote Sens. 2021 13 68 10.3390/rs13010068
86. Messina G. Modica G. Applications of UAV thermal imagery in precision agriculture: State of the art and future research outlook Remote Sens. 2020 12 1491 10.3390/rs12091491
87. Maes W.H. Huete A.R. Steppe K. Optimizing the processing of UAV-based thermal imagery Remote Sens. 2017 9 476 10.3390/rs9050476
88. Bang H.T. Park S. Jeon H. Defect identification in composite materials via thermography and deep learning techniques Compos. Struct. 2020 246 112405 10.1016/j.compstruct.2020.112405
89. Moshou D. Bravo C. West J. Wahlen S. McCartney A. Ramon H. Automatic detection of “yellow rust” in wheat using reflectance measurements and neural networks Comput. Electron. Agric. 2004 44 173 188 10.1016/j.compag.2004.04.003
90. Flavel R.J. Guppy C.N. Tighe M. Watt M. McNeill A. Young I.M. Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography J. Exp. Bot. 2012 63 2503 2511 10.1093/jxb/err421 22271595
91. Gregory P.J. Hutchison D.J. Read D.B. Jenneson P.M. Gilboy W.B. Morton E.J. Non-invasive imaging of roots with high resolution X-ray micro-tomography Plant Soil 2003 255 351 359 10.1023/A:1026179919689
92. Yang W. Xu X. Duan L. Luo Q. Chen S. Zeng S. Liu Q. High-throughput measurement of rice tillers using a conveyor equipped with X-ray computed tomography Rev. Sci. Instrum. 2011 82 1 8 10.1063/1.3531980
93. Atkinson J.A. Pound M.P. Bennett M.J. Wells D.M. Uncovering the hidden half of plants using new advances in root phenotyping Curr. Opin. Biotechnol. 2019 55 1 8 10.1016/j.copbio.2018.06.002 30031961
94. Shi F. Wang J. Shi J. Wu Z. Wang Q. Tang Z. He K. Shi Y. Shen D. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19 IEEE Rev. Biomed. Eng. 2020 14 4 15 10.1109/RBME.2020.2987975
95. Atkins D.E. Droegemeier K.K. Feldman S.I. Garcia Molina H. Klein M.L. Messerschmitt D.G. Messina P. Ostriker J.P. Wright M.H. Garcia-molina H. Revolutionizing Science and Engineering through Cyberinfrastructure Science 2003 84
97. UIC Advanced Cyberinfrastructure for Education and Research Available online: https://acer.uic.edu/get-started/resource-pricing/ (accessed on 4 September 2020)
98. Yang C. Raskin R. Goodchild M. Gahegan M. Geospatial Cyberinfrastructure: Past, present and future Comput. Environ. Urban Syst. 2010 34 264 277 10.1016/j.compenvurbsys.2010.04.001
99. Michener W.K. Allard S. Budden A. Cook R.B. Douglass K. Frame M. Kelling S. Koskela R. Tenopir C. Vieglais D.A. Participatory design of DataONE-Enabling cyberinfrastructure for the biological and environmental sciences Ecol. Inform. 2012 11 5 15 10.1016/j.ecoinf.2011.08.007
100. Wang L. Chen D. Hu Y. Ma Y. Wang J. Towards enabling Cyberinfrastructure as a Service in Clouds Comput. Electr. Eng. 2013 39 3 14 10.1016/j.compeleceng.2012.05.001
101. Kvilekval K. Fedorov D. Obara B. Singh A. Manjunath B.S. Bisque: A platform for bioimage analysis and management Bioinformatics 2009 26 544 552 10.1093/bioinformatics/btp699 20031971
102. Shah S.K. Motivation, governance, and the viability of hybrid forms in open source software development Manag. Sci. 2006 52 1000 1014 10.1287/mnsc.1060.0553
103. Olson D.L. Rosacker K. Crowdsourcing and open source software participation Serv. Bus. 2013 7 499 511 10.1007/s11628-012-0176-4
104. Bauckhage C. Kersting K. Data Mining and Pattern Recognition in Agriculture KI Kunstl. Intell. 2013 27 313 324 10.1007/s13218-013-0273-0
105. Kuhlgert S. Austic G. Zegarac R. Osei-Bonsu I. Hoh D. Chilvers M.I. Roth M.G. Bi K. TerAvest D. Weebadde P. MultispeQ Beta: A tool for large-scale plant phenotyping connected to the open photosynQ network R. Soc. Open Sci. 2016 3 10.1098/rsos.160592 27853580
106. Gehan M.A. Fahlgren N. Abbasi A. Berry J.C. Callen S.T. Chavez L. Doust A.N. Feldman M.J. Gilbert K.B. Hodge J.G. PlantCV v2: Image analysis software for high-throughput plant phenotyping PeerJ 2017 2017 1 23 10.7717/peerj.4088 29209576
107. Tzutalin LabelImg Available online: https://github.com/tzutalin/labelImg (accessed on 14 September 2020)
108. Ubbens J.R. Stavness I. Deep plant phenomics: A deep learning platform for complex plant phenotyping tasks Front. Plant Sci. 2017 8 10.3389/fpls.2017.01190
109. Howard A.G. Zhu M. Chen B. Kalenichenko D. Wang W. Weyand T. Andreetto M. Adam H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications arXiv 2017 1704.04861
111. Agarwal A. Barham P. Brevdo E. Chen Z. Citro C. Corrado G.S. Davis A. Dean J. Devin M. Ghemawat S. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems arXiv 2015 1603.04467
112. Ramcharan A. McCloskey P. Baranowski K. Mbilinyi N. Mrisho L. Ndalahwa M. Legg J. Hughes D.P. A mobile-based deep learning model for cassava disease diagnosis Front. Plant Sci. 2019 10 1 8 10.3389/fpls.2019.00272 30723482
113. Merz T. Chapman S. Autonomous Unmanned Helicopter System for Remote Sensing Missions in Unknown Environments ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012 XXXVIII-1 143 148 10.5194/isprsarchives-XXXVIII-1-C22-143-2011
114. Andrade-Sanchez P. Gore M.A. Heun J.T. Thorp K.R. Carmo-Silva A.E. French A.N. Salvucci M.E. White J.W. Development and evaluation of a field-based high-throughput phenotyping platform Funct. Plant Biol. 2014 41 68 79 10.1071/FP13126 32480967
115. Chawade A. Van Ham J. Blomquist H. Bagge O. Alexandersson E. Ortiz R. High-throughput field-phenotyping tools for plant breeding and precision agriculture Agronomy 2019 9 258 10.3390/agronomy9050258
116. Virlet N. Sabermanesh K. Sadeghi-Tehran P. Hawkesford M.J. Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring Funct. Plant Biol. 2017 44 143 153 10.1071/FP16163
117. IPPN International Plant Phenotyping Network Available online: https://www.plant-phenotyping.org/ (accessed on 13 April 2020)
118. APPF Australian Plant Phenomics Facility Available online: https://www.plantphenomics.org.au/ (accessed on 13 April 2020)
119. Cooper C.B. Shirk J. Zuckerberg B. The Invisible Prevalence of Citizen Science in Global Research: Migratory The Invisible Prevalence of Citizen Science in Global Research: Migratory Birds and Climate Change PLoS ONE 2014 9 e106508 10.1371/journal.pone.0106508 25184755
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.