$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Review: Application of Artificial Intelligence in Phenomics 원문보기

Sensors, v.21 no.13, 2021년, pp.4363 -   

Nabwire, Shona (Department of Biosystems Engineering, Chungnam National University, Daejeon 34134, Korea) ,  Suh, Hyun-Kwon (nabwireshona@o.cnu.ac.kr) ,  Kim, Moon S. (Department of Life Resources Industry, Dong-A University, Busan 49315, Korea) ,  Baek, Insuck (Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Powder Mill Road, BARC-East, Bldg 303, Beltsville, MD 20705, USA) ,  Cho, Byoung-Kwan (moon.kim@usda.gov (M.S.K.))

Abstract AI-Helper 아이콘AI-Helper

Plant phenomics has been rapidly advancing over the past few years. This advancement is attributed to the increased innovation and availability of new technologies which can enable the high-throughput phenotyping of complex plant traits. The application of artificial intelligence in various domains ...

Keyword

참고문헌 (119)

  1. 1. UN United Nations|Population Division Available online: https://www.un.org/development/desa/pd/ (accessed on 10 September 2020) 

  2. 2. Costa C. Schurr U. Loreto F. Menesatti P. Carpentier S. Plant phenotyping research trends, a science mapping approach Front. Plant Sci. 2019 9 1 11 10.3389/fpls.2018.01933 

  3. 3. Arvidsson S. Perez-Rodriguez P. Mueller-Roeber B. A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects New Phytol. 2011 191 895 907 10.1111/j.1469-8137.2011.03756.x 21569033 

  4. 4. Furbank R.T. Plant phenomics: From gene to form and function Funct. Plant Biol. 2009 36 v vi 32688694 

  5. 5. Houle D. Govindaraju D.R. Omholt S. Phenomics: The next challenge Nat. Rev. Genet. 2010 11 855 866 10.1038/nrg2897 21085204 

  6. 6. Pauli D. High-throughput phenotyping technologies in cotton and beyond Proceedings of the Advances in Field-Based High-Throughput Phenotyping and Data Management: Grains and Specialty Crops Spokane, WA, USA 9?10 November 2015 1 11 

  7. 7. White J.W. Andrade-Sanchez P. Gore M.A. Bronson K.F. Coffelt T.A. Conley M.M. Feldmann K.A. French A.N. Heun J.T. Hunsaker D.J. Field-based phenomics for plant genetics research Field Crops Res. 2012 133 101 112 10.1016/j.fcr.2012.04.003 

  8. 8. Furbank R.T. Tester M. Phenomics―Technologies to relieve the phenotyping bottleneck Trends Plant Sci. 2011 16 635 644 10.1016/j.tplants.2011.09.005 22074787 

  9. 9. Fahlgren N. Gehan M.A. Baxter I. Lights, camera, action: High-throughput plant phenotyping is ready for a close-up Curr. Opin. Plant Biol. 2015 24 93 99 10.1016/j.pbi.2015.02.006 25733069 

  10. 10. Chen D. Neumann K. Friedel S. Kilian B. Chen M. Altmann T. Klukas C. Dissecting the phenotypic components of crop plant growthand drought responses based on high-throughput image analysis w open Plant Cell 2014 26 4636 4655 10.1105/tpc.114.129601 25501589 

  11. 11. Walter T. Shattuck D.W. Baldock R. Bastin M.E. Carpenter A.E. Duce S. Ellenberg J. Fraser A. Hamilton N. Pieper S. Visualization of image data from cells to organisms Nat. Methods 2010 7 S26 S41 10.1038/nmeth.1431 20195255 

  12. 12. Oerke E.C. Steiner U. Dehne H.W. Lindenthal M. Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions J. Exp. Bot. 2006 57 2121 2132 10.1093/jxb/erj170 16714311 

  13. 13. Chaerle L. Pineda M. Romero-Aranda R. Van Der Straeten D. Baron M. Robotized thermal and chlorophyll fluorescence imaging of pepper mild mottle virus infection in Nicotiana benthamiana Plant Cell Physiol. 2006 47 1323 1336 10.1093/pcp/pcj102 16943218 

  14. 14. Zarco-Tejada P.J. Berni J.A.J. Suarez L. Sepulcre-Canto G. Morales F. Miller J.R. Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection Remote Sens. Environ. 2009 113 1262 1275 10.1016/j.rse.2009.02.016 

  15. 15. Jensen T. Apan A. Young F. Zeller L. Detecting the attributes of a wheat crop using digital imagery acquired from a low-altitude platform Comput. Electron. Agric. 2007 59 66 77 10.1016/j.compag.2007.05.004 

  16. 16. Montes J.M. Utz H.F. Schipprack W. Kusterer B. Muminovic J. Paul C. Melchinger A.E. Near-infrared spectroscopy on combine harvesters to measure maize grain dry matter content and quality parameters Plant Breed. 2006 125 591 595 10.1111/j.1439-0523.2006.01298.x 

  17. 17. Bai G. Ge Y. Hussain W. Baenziger P.S. Graef G. A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding Comput. Electron. Agric. 2016 128 181 192 10.1016/j.compag.2016.08.021 

  18. 18. Chaerle L. Van Der Straeten D. Imaging techniques and the early detection of plant stress Trends Plant Sci. 2000 5 495 501 10.1016/S1360-1385(00)01781-7 11077259 

  19. 19. Gupta S. Ibaraki Y. Trivedi P. Applications of RGB color imaging in plants Plant Image Anal. 2014 41 62 10.1201/b17441-4 

  20. 20. Montes J.M. Melchinger A.E. Reif J.C. Novel throughput phenotyping platforms in plant genetic studies Trends Plant Sci. 2007 12 433 436 10.1016/j.tplants.2007.08.006 17719833 

  21. 21. Casanova J.J. O’Shaughnessy S.A. Evett S.R. Rush C.M. Development of a wireless computer vision instrument to detect biotic stress in wheat Sensors 2014 14 17753 17769 10.3390/s140917753 25251410 

  22. 22. Kruse O.M.O. Prats-Montalban J.M. Indahl U.G. Kvaal K. Ferrer A. Futsaether C.M. Pixel classification methods for identifying and quantifying leaf surface injury from digital images Comput. Electron. Agric. 2014 108 155 165 10.1016/j.compag.2014.07.010 

  23. 23. Shakoor N. Lee S. Mockler T.C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field Curr. Opin. Plant Biol. 2017 38 184 192 10.1016/j.pbi.2017.05.006 28738313 

  24. 24. Lecun Y. Bengio Y. Hinton G. Deep learning Nature 2015 521 436 444 10.1038/nature14539 26017442 

  25. 25. Hardin P.J. Lulla V. Jensen R.R. Jensen J.R. Small Unmanned Aerial Systems (sUAS) for environmental remote sensing: Challenges and opportunities revisited GIScience Remote Sens. 2019 56 309 322 10.1080/15481603.2018.1510088 

  26. 26. Mookerjee M. Vieira D. Chan M.A. Gil Y. Goodwin C. Shipley T.F. Tikoff B. We need to talk: Facilitating communication between field-based geoscience and cyberinfrastructure communities GSA Today 2015 34 35 10.1130/GSATG248GW.1 

  27. 27. Stewart C.A. Simms S. Plale B. Link M. Hancock D.Y. Fox G.C. What is cyberinfrastructure? Proceedings of the Proceedings of the 38th Annual ACM SIGUCCS Fall Conference: Navigation and Discovery Norfolk, VA, USA 24?27 October 2010 37 44 10.1145/1878335.1878347 

  28. 28. Madhavan K. Elmqvist N. Vorvoreanu M. Chen X. Wong Y. Xian H. Dong Z. Johri A. DIA2: Web-based cyberinfrastructure for visual analysis of funding portfolios IEEE Trans. Vis. Comput. Graph. 2014 20 1823 1832 10.1109/TVCG.2014.2346747 26356896 

  29. 29. Goff S.A. Vaughn M. McKay S. Lyons E. Stapleton A.E. Gessler D. Matasci N. Wang L. Hanlon M. Lenards A. The iPlant collaborative: Cyberinfrastructure for plant biology Front. Plant Sci. 2011 2 1 16 10.3389/fpls.2011.00034 22639570 

  30. 30. Aksulu A. Wade M. A comprehensive review and synthesis of open source research J. Assoc. Inf. Syst. 2010 11 576 656 10.17705/1jais.00245 

  31. 31. Frankenfield J. Artificial Intelligence (AI) Available online: https://www.investopedia.com/terms/a/artificial-intelligence-ai.asp (accessed on 9 February 2021) 

  32. 32. Paschen U. Pitt C. Kietzmann J. Artificial intelligence: Building blocks and an innovation typology Bus. Horiz. 2020 63 147 155 10.1016/j.bushor.2019.10.004 

  33. 33. Frey L.J. Artificial intelligence and integrated genotype?Phenotype identification Genes 2019 10 18 10.3390/genes10010018 

  34. 34. Zhuang Y.T. Wu F. Chen C. Pan Y. He Challenges and opportunities: From big data to knowledge in AI 2.0 Front. Inf. Technol. Electron. Eng. 2017 18 3 14 10.1631/FITEE.1601883 

  35. 35. Roscher R. Bohn B. Duarte M.F. Garcke J. Explainable Machine Learning for Scientific Insights and Discoveries IEEE Access 2020 8 42200 42216 10.1109/ACCESS.2020.2976199 

  36. 36. Singh A. Ganapathysubramanian B. Singh A.K. Sarkar S. Machine Learning for High-Throughput Stress Phenotyping in Plants Trends Plant Sci. 2016 21 110 124 10.1016/j.tplants.2015.10.015 26651918 

  37. 37. Rahaman M.M. Ahsan M.A. Chen M. Data-Mining Techniques for Image-based Plant Phenotypic Traits Identification and Classification Sci. Rep. 2019 9 1 11 10.1038/s41598-019-55609-6 30626917 

  38. 38. Huang K.Y. Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features Comput. Electron. Agric. 2007 57 3 11 10.1016/j.compag.2007.01.015 

  39. 39. Wetterich C.B. Kumar R. Sankaran S. Belasque J. Ehsani R. Marcassa L.G. A comparative study on application of computer vision and fluorescence imaging spectroscopy for detection of citrus huanglongbing disease in USA and Brazil Opt. InfoBase Conf. Pap. 2013 2013 10.1364/fio.2013.jw3a.26 

  40. 40. Sommer C. Gerlich D.W. Machine learning in cell biology-teaching computers to recognize phenotypes J. Cell Sci. 2013 126 5529 5539 10.1242/jcs.123604 24259662 

  41. 41. Sadeghi-Tehran P. Sabermanesh K. Virlet N. Hawkesford M.J. Automated method to determine two critical growth stages of wheat: Heading and flowering Front. Plant Sci. 2017 8 1 14 10.3389/fpls.2017.00252 28220127 

  42. 42. Brichet N. Fournier C. Turc O. Strauss O. Artzet S. Pradal C. Welcker C. Tardieu F. Cabrera-Bosquet L. A robot-assisted imaging pipeline for tracking the growths of maize ear and silks in a high-throughput phenotyping platform Plant Methods 2017 13 1 12 10.1186/s13007-017-0246-7 28053646 

  43. 43. Wilf P. Zhang S. Chikkerur S. Little S.A. Wing S.L. Serre T. Computer vision cracks the leaf code Proc. Natl. Acad. Sci. USA 2016 113 3305 3310 10.1073/pnas.1524473113 26951664 

  44. 44. Sabanci K. Toktas A. Kayabasi A. Grain classifier with computer vision usingadaptive neuro-fuzzy inference system.pdf J. Sci. Food Agric. 2017 97 3994 4000 10.1002/jsfa.8264 28194800 

  45. 45. Sabanci K. Kayabasi A. Toktas A. Computer vision-based method for classification of wheat grains using artificial neural network J. Sci. Food Agric. 2017 97 2588 2593 10.1002/jsfa.8080 27718230 

  46. 46. Lin P. Li X.L. Chen Y.M. He Y. A Deep Convolutional Neural Network Architecture for Boosting Image Discrimination Accuracy of Rice Species Food Bioprocess Technol. 2018 11 765 773 10.1007/s11947-017-2050-9 

  47. 47. Singh A.K. Ganapathysubramanian B. Sarkar S. Singh A. Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives Trends Plant Sci. 2018 23 883 898 10.1016/j.tplants.2018.07.004 30104148 

  48. 48. Pound M.P. Atkinson J.A. Townsend A.J. Wilson M.H. Griffiths M. Jackson A.S. Bulat A. Tzimiropoulos G. Wells D.M. Murchie E.H. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping GigaScience 2017 6 1 10 10.1093/gigascience/gix083 29020747 

  49. 49. Fuentes A. Yoon S. Kim S.C. Park D.S. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition Sensors 2017 17 2022 10.3390/s17092022 28869539 

  50. 50. Abdalla A. Cen H. Wan L. Rashid R. Weng H. Zhou W. He Y. Fine-tuning convolutional neural network with transfer learning for semantic segmentation of ground-level oilseed rape images in a field with high weed pressure Comput. Electron. Agric. 2019 167 105091 10.1016/j.compag.2019.105091 

  51. 51. Espejo-Garcia B. Mylonas N. Athanasakos L. Vali E. Fountas S. Combining generative adversarial networks and agricultural transfer learning for weeds identification Biosyst. Eng. 2021 204 79 89 10.1016/j.biosystemseng.2021.01.014 

  52. 52. Barbedo J.G.A. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification Comput. Electron. Agric. 2018 153 46 53 10.1016/j.compag.2018.08.013 

  53. 53. Wang G. Sun Y. Wang J. Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning Comput. Intell. Neurosci. 2017 2017 10.1155/2017/2917536 

  54. 54. Buzzy M. Thesma V. Davoodi M. Velni J.M. Real-time plant leaf counting using deep object detection networks Sensors 2020 20 6896 10.3390/s20236896 

  55. 55. Ghosal S. Zheng B. Chapman S.C. Potgieter A.B. Jordan D.R. Wang X. Singh A.K. Singh A. Hirafuji M. Ninomiya S. A Weakly Supervised Deep Learning Framework for Sorghum Head Detection and Counting Plant Phenomics 2019 2019 1 14 10.34133/2019/1525874 33313521 

  56. 56. Aich S. Stavness I. Leaf counting with deep convolutional and deconvolutional networks Proceedings of the IEEE International Conference on Computer Vision (Workshops) Venice, Italy 22?29 October 2017 2080 2089 10.1109/ICCVW.2017.244 

  57. 57. Wang X. Xuan H. Evers B. Shrestha S. Pless R. Poland J. High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat GigaScience 2019 8 1 11 10.1093/gigascience/giz120 

  58. 58. Ghosal S. Blystone D. Singh A.K. Ganapathysubramanian B. Singh A. Sarkar S. An explainable deep machine vision framework for plant stress phenotyping Proc. Natl. Acad. Sci. USA 2018 115 4613 4618 10.1073/pnas.1716999115 29666265 

  59. 59. Chaerle L. Van Der Straeten D. Seeing is believing: Imaging techniques to monitor plant health Biochim. Biophys. Acta Gene Struct. Expr. 2001 1519 153 166 10.1016/S0167-4781(01)00238-X 

  60. 60. Perez-Sanz F. Navarro P.J. Egea-Cortines M. Plant phenomics: An overview of image acquisition technologies and image data analysis algorithms GigaScience 2017 6 1 18 10.1093/gigascience/gix092 

  61. 61. Cen H. Weng H. Yao J. He M. Lv J. Hua S. Li H. He Y. Chlorophyll fluorescence imaging uncovers photosynthetic fingerprint of citrus Huanglongbing Front. Plant Sci. 2017 8 1 11 10.3389/fpls.2017.01509 28220127 

  62. 62. Lichtenthaler H.K. Langsdorf G. Lenk S. Buschmann C. Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system Photosynthetica 2005 43 355 369 10.1007/s11099-005-0060-8 

  63. 63. Ehlert B. Hincha D.K. Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves Plant Methods 2008 4 1 7 10.1186/1746-4811-4-12 18182106 

  64. 64. Zheng H. Zhou X. He J. Yao X. Cheng T. Zhu Y. Cao W. Tian Y. Early season detection of rice plants using RGB, NIR-G-B and multispectral images from unmanned aerial vehicle (UAV) Comput. Electron. Agric. 2020 169 105223 10.1016/j.compag.2020.105223 

  65. 65. Padmavathi K. Thangadurai K. Implementation of RGB and grayscale images in plant leaves disease detection―Comparative study Indian J. Sci. Technol. 2016 9 4 9 10.17485/ijst/2016/v9i6/77739 

  66. 66. Wang X. Yang W. Wheaton A. Cooley N. Moran B. Automated canopy temperature estimation via infrared thermography: A first step towards automated plant water stress monitoring Comput. Electron. Agric. 2010 73 74 83 10.1016/j.compag.2010.04.007 

  67. 67. Munns R. James R.A. Sirault X.R.R. Furbank R.T. Jones H.G. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit J. Exp. Bot. 2010 61 3499 3507 10.1093/jxb/erq199 20605897 

  68. 68. Urrestarazu M. Infrared thermography used to diagnose the effects of salinity in a soilless culture Quant. InfraRed Thermogr. J. 2013 10 1 8 10.1080/17686733.2013.763471 

  69. 69. Fittschen U.E.A. Kunz H.H. Hohner R. Tyssebotn I.M.B. Fittschen A. A new micro X-ray fluorescence spectrometer for in vivo elemental analysis in plants X-ray Spectrom. 2017 46 374 381 10.1002/xrs.2783 

  70. 70. Chow T.H. Tan K.M. Ng B.K. Razul S.G. Tay C.M. Chia T.F. Poh W.T. Diagnosis of virus infection in orchid plants with high-resolution optical coherence tomography J. Biomed. Opt. 2009 14 014006 10.1117/1.3066900 19256694 

  71. 71. Garbout A. Munkholm L.J. Hansen S.B. Petersen B.M. Munk O.L. Pajor R. The use of PET/CT scanning technique for 3D visualization and quantification of real-time soil/plant interactions Plant Soil 2012 352 113 127 10.1007/s11104-011-0983-8 

  72. 72. A A. Malenovsky Z. Hanu? J. Toma?kova I. Urban O. Marek M.V. Near-distance imaging spectroscopy investigating chlorophyll fluorescence and photosynthetic activity of grassland in the daily course Funct. Plant Biol. 2009 36 1006 1015 10.1071/FP09154 32688712 

  73. 73. Vigneau N. Ecarnot M. Rabatel G. Roumet P. Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat Field Crops Res. 2011 122 25 31 10.1016/j.fcr.2011.02.003 

  74. 74. Behmann J. Steinrucken J. Plumer L. Detection of early plant stress responses in hyperspectral images ISPRS J. Photogramm. Remote Sens. 2014 93 98 111 10.1016/j.isprsjprs.2014.03.016 

  75. 75. Prey L. von Bloh M. Schmidhalter U. Evaluating RGB imaging and multispectral active and hyperspectral passive sensing for assessing early plant vigor in winter wheat Sensors 2018 18 2931 10.3390/s18092931 

  76. 76. Li L. Zhang Q. Huang D. A review of imaging techniques for plant phenotyping Sensors 2014 14 20078 20111 10.3390/s141120078 25347588 

  77. 77. Han X.F. Laga H. Bennamoun M. Image-based 3D Object Reconstruction: State-of-the-Art and Trends in the Deep Learning Era IEEE Trans. Pattern Anal. Mach. Intell. 2019 43 1578 1604 10.1109/TPAMI.2019.2954885 31751229 

  78. 78. Nguyen C.V. Fripp J. Lovell D.R. Furbank R. Kuffner P. Daily H. Sirault X. 3D scanning system for automatic high-resolution plant phenotyping Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA) Gold Coast, Australia 30 November?2 December 2016 

  79. 79. Matovic M.D. Biomass: Detection, Production and Usage BoD―Books on Demand Norderstedt, Germany 2011 9533074922 

  80. 80. Liu H. Bruning B. Garnett T. Berger B. Hyperspectral imaging and 3D technologies for plant phenotyping: From satellite to close-range sensing Comput. Electron. Agric. 2020 175 105621 10.1016/j.compag.2020.105621 

  81. 81. Zhu H. Chu B. Fan Y. Tao X. Yin W. He Y. Hyperspectral Imaging for Predicting the Internal Quality of Kiwifruits Based on Variable Selection Algorithms and Chemometric Models Sci. Rep. 2017 7 1 13 10.1038/s41598-017-08509-6 28127051 

  82. 82. Zhang M. Li G. Visual detection of apple bruises using AdaBoost algorithm and hyperspectral imaging Int. J. Food Prop. 2018 21 1598 1607 10.1080/10942912.2018.1503299 

  83. 83. Gu Q. Sheng L. Zhang T. Lu Y. Zhang Z. Zheng K. Hu H. Zhou H. Early detection of tomato spotted wilt virus infection in tobacco using the hyperspectral imaging technique and machine learning algorithms Comput. Electron. Agric. 2019 167 105066 10.1016/j.compag.2019.105066 

  84. 84. Ramesh V. A Review on the Application of Deep Learning in Thermography Int. J. Eng. Manag. Res. 2017 7 489 493 

  85. 85. Pineda M. Baron M. Perez-Bueno M.L. Thermal imaging for plant stress detection and phenotyping Remote Sens. 2021 13 68 10.3390/rs13010068 

  86. 86. Messina G. Modica G. Applications of UAV thermal imagery in precision agriculture: State of the art and future research outlook Remote Sens. 2020 12 1491 10.3390/rs12091491 

  87. 87. Maes W.H. Huete A.R. Steppe K. Optimizing the processing of UAV-based thermal imagery Remote Sens. 2017 9 476 10.3390/rs9050476 

  88. 88. Bang H.T. Park S. Jeon H. Defect identification in composite materials via thermography and deep learning techniques Compos. Struct. 2020 246 112405 10.1016/j.compstruct.2020.112405 

  89. 89. Moshou D. Bravo C. West J. Wahlen S. McCartney A. Ramon H. Automatic detection of “yellow rust” in wheat using reflectance measurements and neural networks Comput. Electron. Agric. 2004 44 173 188 10.1016/j.compag.2004.04.003 

  90. 90. Flavel R.J. Guppy C.N. Tighe M. Watt M. McNeill A. Young I.M. Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography J. Exp. Bot. 2012 63 2503 2511 10.1093/jxb/err421 22271595 

  91. 91. Gregory P.J. Hutchison D.J. Read D.B. Jenneson P.M. Gilboy W.B. Morton E.J. Non-invasive imaging of roots with high resolution X-ray micro-tomography Plant Soil 2003 255 351 359 10.1023/A:1026179919689 

  92. 92. Yang W. Xu X. Duan L. Luo Q. Chen S. Zeng S. Liu Q. High-throughput measurement of rice tillers using a conveyor equipped with X-ray computed tomography Rev. Sci. Instrum. 2011 82 1 8 10.1063/1.3531980 

  93. 93. Atkinson J.A. Pound M.P. Bennett M.J. Wells D.M. Uncovering the hidden half of plants using new advances in root phenotyping Curr. Opin. Biotechnol. 2019 55 1 8 10.1016/j.copbio.2018.06.002 30031961 

  94. 94. Shi F. Wang J. Shi J. Wu Z. Wang Q. Tang Z. He K. Shi Y. Shen D. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19 IEEE Rev. Biomed. Eng. 2020 14 4 15 10.1109/RBME.2020.2987975 

  95. 95. Atkins D.E. Droegemeier K.K. Feldman S.I. Garcia Molina H. Klein M.L. Messerschmitt D.G. Messina P. Ostriker J.P. Wright M.H. Garcia-molina H. Revolutionizing Science and Engineering through Cyberinfrastructure Science 2003 84 

  96. 96. Lee C.P. Dourish P. Mark G. The human infrastructure of cyberinfrastructure Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work Banff, AB, Canada 4?8 November 2006 483 492 10.1145/1180875.1180950 

  97. 97. UIC Advanced Cyberinfrastructure for Education and Research Available online: https://acer.uic.edu/get-started/resource-pricing/ (accessed on 4 September 2020) 

  98. 98. Yang C. Raskin R. Goodchild M. Gahegan M. Geospatial Cyberinfrastructure: Past, present and future Comput. Environ. Urban Syst. 2010 34 264 277 10.1016/j.compenvurbsys.2010.04.001 

  99. 99. Michener W.K. Allard S. Budden A. Cook R.B. Douglass K. Frame M. Kelling S. Koskela R. Tenopir C. Vieglais D.A. Participatory design of DataONE-Enabling cyberinfrastructure for the biological and environmental sciences Ecol. Inform. 2012 11 5 15 10.1016/j.ecoinf.2011.08.007 

  100. 100. Wang L. Chen D. Hu Y. Ma Y. Wang J. Towards enabling Cyberinfrastructure as a Service in Clouds Comput. Electr. Eng. 2013 39 3 14 10.1016/j.compeleceng.2012.05.001 

  101. 101. Kvilekval K. Fedorov D. Obara B. Singh A. Manjunath B.S. Bisque: A platform for bioimage analysis and management Bioinformatics 2009 26 544 552 10.1093/bioinformatics/btp699 20031971 

  102. 102. Shah S.K. Motivation, governance, and the viability of hybrid forms in open source software development Manag. Sci. 2006 52 1000 1014 10.1287/mnsc.1060.0553 

  103. 103. Olson D.L. Rosacker K. Crowdsourcing and open source software participation Serv. Bus. 2013 7 499 511 10.1007/s11628-012-0176-4 

  104. 104. Bauckhage C. Kersting K. Data Mining and Pattern Recognition in Agriculture KI Kunstl. Intell. 2013 27 313 324 10.1007/s13218-013-0273-0 

  105. 105. Kuhlgert S. Austic G. Zegarac R. Osei-Bonsu I. Hoh D. Chilvers M.I. Roth M.G. Bi K. TerAvest D. Weebadde P. MultispeQ Beta: A tool for large-scale plant phenotyping connected to the open photosynQ network R. Soc. Open Sci. 2016 3 10.1098/rsos.160592 27853580 

  106. 106. Gehan M.A. Fahlgren N. Abbasi A. Berry J.C. Callen S.T. Chavez L. Doust A.N. Feldman M.J. Gilbert K.B. Hodge J.G. PlantCV v2: Image analysis software for high-throughput plant phenotyping PeerJ 2017 2017 1 23 10.7717/peerj.4088 29209576 

  107. 107. Tzutalin LabelImg Available online: https://github.com/tzutalin/labelImg (accessed on 14 September 2020) 

  108. 108. Ubbens J.R. Stavness I. Deep plant phenomics: A deep learning platform for complex plant phenotyping tasks Front. Plant Sci. 2017 8 10.3389/fpls.2017.01190 

  109. 109. Howard A.G. Zhu M. Chen B. Kalenichenko D. Wang W. Weyand T. Andreetto M. Adam H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications arXiv 2017 1704.04861 

  110. 110. Sandler M. Howard A. Zhu M. Zhmoginov A. Chen L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Salt Lake City, UT, USA 18?23 June 2018 4510 4520 10.1109/CVPR.2018.00474 

  111. 111. Agarwal A. Barham P. Brevdo E. Chen Z. Citro C. Corrado G.S. Davis A. Dean J. Devin M. Ghemawat S. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems arXiv 2015 1603.04467 

  112. 112. Ramcharan A. McCloskey P. Baranowski K. Mbilinyi N. Mrisho L. Ndalahwa M. Legg J. Hughes D.P. A mobile-based deep learning model for cassava disease diagnosis Front. Plant Sci. 2019 10 1 8 10.3389/fpls.2019.00272 30723482 

  113. 113. Merz T. Chapman S. Autonomous Unmanned Helicopter System for Remote Sensing Missions in Unknown Environments ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012 XXXVIII-1 143 148 10.5194/isprsarchives-XXXVIII-1-C22-143-2011 

  114. 114. Andrade-Sanchez P. Gore M.A. Heun J.T. Thorp K.R. Carmo-Silva A.E. French A.N. Salvucci M.E. White J.W. Development and evaluation of a field-based high-throughput phenotyping platform Funct. Plant Biol. 2014 41 68 79 10.1071/FP13126 32480967 

  115. 115. Chawade A. Van Ham J. Blomquist H. Bagge O. Alexandersson E. Ortiz R. High-throughput field-phenotyping tools for plant breeding and precision agriculture Agronomy 2019 9 258 10.3390/agronomy9050258 

  116. 116. Virlet N. Sabermanesh K. Sadeghi-Tehran P. Hawkesford M.J. Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring Funct. Plant Biol. 2017 44 143 153 10.1071/FP16163 

  117. 117. IPPN International Plant Phenotyping Network Available online: https://www.plant-phenotyping.org/ (accessed on 13 April 2020) 

  118. 118. APPF Australian Plant Phenomics Facility Available online: https://www.plantphenomics.org.au/ (accessed on 13 April 2020) 

  119. 119. Cooper C.B. Shirk J. Zuckerberg B. The Invisible Prevalence of Citizen Science in Global Research: Migratory The Invisible Prevalence of Citizen Science in Global Research: Migratory Birds and Climate Change PLoS ONE 2014 9 e106508 10.1371/journal.pone.0106508 25184755 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로