$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Kinetic modeling of diesel autothermal reforming for fuel cell auxiliary power units

Chemical engineering journal, v.424, 2021년, pp.130564 -   

Kim, Daewook (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Choi, Suhang (PSE Korea) ,  Jeong, Sohyun (LG Chem Ltd.) ,  Bae, Minseok (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Katikaneni, Sai P. (Research and Development Center, Saudi Aramco) ,  Bae, Joongmyeon (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Heo, Seongmin (Department of Chemical Engineering, Dankook University) ,  Lee, Jay H. (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST))

Abstract AI-Helper 아이콘AI-Helper

Abstract Fuel cell auxiliary power unit (FC-APU) system for heavy-duty trucks has been attracting much attention as an alternative to engine idling to reduce pollutant emissions. In this system, a reformer, which converts diesel, the main fuel of heavy-duty trucks, into syngas suitable for the fuel...

Keyword

참고문헌 (45)

  1. J. Power Sources Jain 160 1 474 2006 10.1016/j.jpowsour.2006.01.083 Techno-economic analysis of fuel cell auxiliary power units as alternative to idling 

  2. Int. J. Hydrogen Energy AGNOLUCCI 32 17 4306 2007 10.1016/j.ijhydene.2007.05.017 Prospects of fuel cell auxiliary power units in the civil markets 

  3. Energy Lutsey 32 12 2428 2007 10.1016/j.energy.2007.05.017 Analysis of potential fuel consumption and emissions reductions from fuel cell auxiliary power units (APUs) in long-haul trucks 

  4. IEEE Trans. Ind. Electron. Pregelj 64 8 6660 2017 10.1109/TIE.2017.2674628 A diesel-powered fuel cell APU-reliability issues and mitigation approaches 

  5. Int. J. Hydrogen Energy Ahmed 26 291 2001 10.1016/S0360-3199(00)00097-5 Hydrogen from hydrocarbon fuels for fuel cells 

  6. Appl. Energy Xu 108 202 2013 10.1016/j.apenergy.2013.03.028 Small-scale reforming of diesel and jet fuels to make hydrogen and syngas for fuel cells: a review 

  7. Int. J. Hydrogen Energy Liu 29 1035 2004 10.1016/j.ijhydene.2003.11.009 Characterization of kilowatt-scale autothermal reformer for production of hydrogen from heavy hydrocarbons 

  8. Int. J. Hydrogen Energy Kopasz 30 1243 2005 10.1016/j.ijhydene.2005.02.012 Unraveling the maze: understanding of diesel reforming through the use of simplified fuel blends 

  9. Appl. Catal. A Qi 293 71 2005 10.1016/j.apcata.2005.07.009 Autothermal reforming of n-octane on Ru-based catalysts 

  10. J. Power Sources Kang 159 2 1283 2006 10.1016/j.jpowsour.2005.12.048 Autothermal reforming study of diesel for fuel cell application 

  11. J. Power Sources Kang 163 1 538 2006 10.1016/j.jpowsour.2006.09.035 Performance comparison of autothermal reforming for liquid hydrocarbons, gasoline and diesel for fuel cell applications 

  12. Appl. Catal. A Harada 371 1-2 173 2009 10.1016/j.apcata.2009.10.009 Hydrogen production by autothermal reforming of kerosene over MgAlOx-supported Rh catalysts 

  13. Int. J. Hydrogen Energy Xu 39 34 19593 2014 10.1016/j.ijhydene.2014.09.124 Autothermal reforming of n-dodecane and desulfurized Jet-A fuel for producing hydrogen-rich syngas 

  14. Catal. Today Karatzas 164 1 190 2011 10.1016/j.cattod.2010.10.019 Hydrogen generation from n-tetradecane, low-sulfur and Fischer-Tropsch diesel over Rh supported on alumina doped with ceria/lanthana 

  15. Catal. Today González 210 19 2013 10.1016/j.cattod.2012.11.009 Full-scale autothermal reforming for transport applications: the effect of diesel fuel quality 

  16. Int. J. Hydrogen Energy Xu 40 6798 2015 10.1016/j.ijhydene.2015.03.147 Fuel adaptability study of a lab-scale 2.5 kWth autothermal reformer 

  17. Int. J. Hydrogen Energy KAILA 31 13 1934 2006 10.1016/j.ijhydene.2006.04.004 Autothermal reforming of simulated gasoline and diesel fuels 

  18. J. Power Sources Gould 164 1 344 2007 10.1016/j.jpowsour.2006.09.096 Nickel-catalyzed autothermal reforming of jet fuel surrogates: n-Dodecane, tetralin, and their mixture 

  19. Fuel Shekhawat 88 5 817 2009 10.1016/j.fuel.2008.10.030 Fuel constituent effects on fuel reforming properties for fuel cell applications 

  20. Int. J. Hydrogen Energy Pasel 45 3 2279 2020 10.1016/j.ijhydene.2019.11.137 Recent advances in diesel autothermal reformer design 

  21. Appl. Catal. A Springmann 235 1-2 101 2002 10.1016/S0926-860X(02)00257-0 Isothermal kinetic measurements for hydrogen production from hydrocarbon fuels using a novel kinetic reactor concept 

  22. Appl. Catal. A Pacheco 250 1 161 2003 10.1016/S0926-860X(03)00291-6 Reaction kinetics and reactor modeling for fuel processing of liquid hydrocarbons to produce hydrogen: isooctane reforming 

  23. Fuel Parmar 89 6 1212 2010 10.1016/j.fuel.2009.09.034 Kinetic studies of the autothermal reforming of tetradecane over Pt/Al2O3 catalyst in a fixed-bed reactor 

  24. Appl. Catal. A Creaser 404 1-2 129 2011 10.1016/j.apcata.2011.07.023 Modeling study of 5 kWe-scale autothermal diesel fuel reformer 

  25. Catal. Today Williams 69 1-4 3 2001 10.1016/S0920-5861(01)00348-0 Monolith structures, materials, properties and uses 

  26. Chem. Eng. J. Halabi 137 3 568 2008 10.1016/j.cej.2007.05.019 Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer 

  27. Chem. Eng. J. Halabi 168 872 2011 10.1016/j.cej.2011.02.015 Reactor modeling of sorption-enhanced autothermal reforming of methane part I: performance study of hydrotalcite and lithium zirconate-based processes 

  28. Catal. Today Lattner 120 1 78 2007 10.1016/j.cattod.2006.07.005 Autothermal reforming of methanol: experiments and modeling 

  29. Int. J. Heat Mass Transf. Chan 48 19-20 4205 2005 10.1016/j.ijheatmasstransfer.2005.02.042 Transient performance of an autothermal reformer - A 2-D modeling approach 

  30. Int. J. Hydrogen Energy Ding 33 633 2008 10.1016/j.ijhydene.2007.10.037 Autothermal reforming of methane gas - modelling and experimental validation 

  31. J. Power Sources Sari 352 64 2017 10.1016/j.jpowsour.2017.03.120 Modeling and 3D-simulation of hydrogen production via methanol steam reforming in copper-coated channels of a mini reformer 

  32. Energy Inbamrung 152 383 2018 10.1016/j.energy.2018.03.139 Modeling of a square channel monolith reactor for methane steam reforming 

  33. Int. J. Hydrogen Energy Andisheh Tadbir 37 3 2287 2012 10.1016/j.ijhydene.2011.11.015 Integrated methanol reforming and oxidation in wash-coated microreactors: a three-dimensional simulation 

  34. Int. J. Hydrogen Energy Jang 37 18 13797 2012 10.1016/j.ijhydene.2012.03.139 The three-dimensional simulation and optimization of an integrated power system for reformer-PrOx-fuel cell modeling 

  35. Appl. Catal. A Chen 345 1 1 2008 10.1016/j.apcata.2008.04.010 Mathematical modeling of monolith catalysts and reactors for gas phase reactions 

  36. Combust. Flame Curran 129 253 2002 10.1016/S0010-2180(01)00373-X A comprehensive modeling study of iso-octane oxidation 

  37. Catal. Today Ancheyta 109 1-4 76 2005 10.1016/j.cattod.2005.08.015 Kinetic modeling of hydrocracking of heavy oil fractions: a review 

  38. Proc. Combust. Inst. Huang 30 1 1309 2005 10.1016/j.proci.2004.08.001 A systematic lumping approach for the reduction of comprehensive kinetic models 

  39. Comput. Chem. Eng. Gupta 95 170 2016 10.1016/j.compchemeng.2016.09.011 Time scale decomposition in complex reaction systems: a graph theoretic analysis 

  40. Chem. Rev. Okino 98 2 391 1998 10.1021/cr950223l Simplification of mathematical models of chemical reaction systems 

  41. J. Power Sources Palm 106 1-2 231 2002 10.1016/S0378-7753(01)01018-7 Small-scale testing of a precious metal catalyst in the autothermal reforming of various hydrocarbon feeds 

  42. S. Mannor, R.Y. Rubinstein, Y. Gat, The cross entropy method for fast policy search, Proceedings of the 20th International Conference on Machine Learning (ICML-03), 2003, pp. 512-519. 

  43. Appl. Energy Han 156 99 2015 10.1016/j.apenergy.2015.06.036 Diesel autothermal reforming with hydrogen peroxide for low-oxygen environments 

  44. Int. J. Hydrogen Energy QI 32 8 981 2007 10.1016/j.ijhydene.2006.06.072 Autothermal reforming of gasoline on Rh-based monolithic catalysts 

  45. Combust. Flame Maier 158 4 796 2011 10.1016/j.combustflame.2010.11.004 Interaction of heterogeneous and homogeneous kinetics with mass and heat transfer in catalytic reforming of logistic fuels 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로