$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Lightweight Design of an Automotive Battery-Pack Enclosure via Advanced High-Strength Steels and Size Optimization

International journal of automotive technology, v.22 no.5, 2021년, pp.1279 - 1290  

Pan, Yongjun ,  Xiong, Yue ,  Wu, Lei ,  Diao, Keshan ,  Guo, Wei

초록이 없습니다.

참고문헌 (24)

  1. Renewable and Sustainable Energy Reviews S Arora 60 1319 2016 10.1016/j.rser.2016.03.013 Arora, S., Shen, W. and Kapoor, A. (2016). Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles. Renewable and Sustainable Energy Reviews, 60, 1319-1331. 

  2. J. Power Sources M J Brand 288 62 2015 10.1016/j.jpowsour.2015.04.107 Brand, M. J., Schuster, S. F., Bach, T., Fleder, E., Stelz, M., Gläser, S., Müller, J., Sextl, G. and Jossen, A. (2015). Effects of vibrations and shocks on lithium-ion cells. J. Power Sources, 288, 62-69. 

  3. Int. J. Vehicle Safety C Chen 11 1 37 2019 10.1504/IJVS.2019.101304 Chen, C., Xiong, F. C., Lan, F. and Kuang, S. S. (2019). Crush simulation and optimisation study of power battery pack. Int. J. Vehicle Safety 11, 1, 37-55. 

  4. 10.1145/3366194.3366244 Chen, L. and X. Y. Zhao. (2019). Lightweight design and static strength analysis of battery box for electric vehicle. Proc. 2019 Int. Conf. Robotics, Intelligent Control and Artificial Intelligence, Association for Computing Machinery. Shanghai, China. 

  5. 10.1007/978-981-10-8506-2_57 Chen, X., Li, M., Li, S., Jin, J. and Zhang, C. (2017a). Design optimization of multi-material battery enclosure for electric vehicle. Society of Automotive Engineers (SAE)-China Cong., Singapore, Singapore. 

  6. Structural and Multidisciplinary Optimization Y Chen 56 2 455 2017 10.1007/s00158-017-1674-8 Chen, Y., Liu, G., Zhang, Z. Y. and Hou, S. J. (2017b). Integrated design technique for materials and structures of vehicle body under crash safety considerations. Structural and Multidisciplinary Optimization 56, 2, 455-472. 

  7. Int. J. Automotive Technology V Diermann 20 1 65 2019 10.1007/s12239-019-0006-y Diermann, V. and P. Middendorf. (2019). Automatic evaluation of structural integrity in crashworthiness simulations using image analysis. Int. J. Automotive Technology 20, 1, 65-72. 

  8. Materials Science Forum M Hartmann 765 818 2013 10.4028/www.scientific.net/MSF.765.818 Hartmann, M., Roschitz, M. and Khalil, Z. (2013). Enhanced battery pack for electric vehicle: Noise reduction and increased stiffness. Materials Science Forum, 765, 818-822. 

  9. J. Power Sources S K Hong 261 101 2014 10.1016/j.jpowsour.2014.03.008 Hong, S. K., Epureanu, B. I. and Castanier, M. P. (2014). Parametric reduced-order models of battery pack vibration including structural variation and prestress effects. J. Power Sources, 261, 101-111. 

  10. S Kaleg 2016 Int. Conf. Sustainable Energy Engineering and Application (ICSEEA) Kaleg, S. (2016). 1P15S lithium battery pack: Aluminum 5052-0 strength of material analysis and optimization. Int. Conf. Sustainable Energy Engineering and Application (ICSEEA), IEEE. Tangerang, Banten, Indonesia. 

  11. Extreme Mechanics Letters J Kukreja 9 3 371 2016 10.1016/j.eml.2016.05.004 Kukreja, J., Nguyen, T., Siegmund, T., Chen, W., Tsutsui, W., Balakrishnan, K., Liao, H. and Parab, N. (2016). Crash analysis of a conceptual electric vehicle with a damage tolerant battery pack. Extreme Mechanics Letters 9, 3, 371-378. 

  12. Int. J. Electric and Hybrid Vehicles J F Lang 7 3 272 2015 10.1504/IJEHV.2015.071640 Lang, J. F. and Kjell, G. (2015). Comparing vibration measurements in an electric vehicle with standard vibration requirements for li-ion batteries using power spectral density analysis. Int. J. Electric and Hybrid Vehicles 7, 3, 272-286. 

  13. Science China Technological Sciences W Li 61 10 1472 2018 10.1007/s11431-017-9296-0 Li, W., Xia, Y., Chen, G. H. and Sahraei, E. (2018). Comparative study of mechanical-electrical thermal responses of pouch, cylindrical, and prismatic lithium-ion cells under mechanical abuse. Science China Technological Sciences 61, 10, 1472-1482. 

  14. J. Vibroengineering C Lin 18 4 2343 2016 10.21595/jve.2016.16837 Lin, C., Gao, F. L., Wang, W. W., and Chen, X. K. (2016). Multi-objective optimization design for a battery pack of electric vehicle with surrogate models. J. Vibroengineering 18, 4, 2343-2358. 

  15. Composite Structures Z Liu 140 630 2016 10.1016/j.compstruct.2015.12.031 Liu, Z., Lu, J. H. and Zhu, P. (2016). Lightweight design of automotive composite bumper system using modified particle swarm optimizer. Composite Structures, 140, 630-643. 

  16. J. Mechanical Science and Technology Z Liu 33 2 695 2019 10.1007/s12206-019-0124-5 Liu, Z., Li, H., & Zhu, P. (2019). Diversity enhanced particle swarm optimization algorithm and its application in vehicle lightweight design. J. Mechanical Science and Technology 33, 2, 695-709. 

  17. Composite Structures J Obradovic 94 2 423 2012 10.1016/j.compstruct.2011.08.005 Obradovic, J., Boria, S. and Belingardi, G. (2012). Lightweight design and crash analysis of composite frontal impact energy absorbing structures. Composite Structures 94, 2, 423-430. 

  18. Energy Storage S K Pal 2 3 e148 2020 10.1002/est2.148 Pal, S. K., Singh, S., Singh, H., Le Phung, M. L., Yooyen, S. and Sleesongsom, S. (2020). Intelligent design optimization of battery pack enclosure for electric vehicle by considering cold-spraying as an additive manufacturing technology. Energy Storage 2,3. e148. 

  19. Lightweight Design Worldwide C Schludi 12 6 44 2019 10.1007/s41777-019-0061-0 Schludi, C. and Joos, J. (2019). Lightweight and safe composite battery housings. Lightweight Design Worldwide 12, 6, 44-47. 

  20. Int. J. Crashworthiness R Uerlich 25 6 664 2020 10.1080/13588265.2019.1632545 Uerlich, R., Sanalkumar, K. A., Bokelmann, T. and Vietor, T. (2020). Finite element analysis considering packaging efficiency of innovative battery pack designs. Int. J. Crashworthiness 25, 6, 664-679. 

  21. Energy Procedia L Wang 88 874 2016 10.1016/j.egypro.2016.06.103 Wang, L., Chen, X. K. and Zhao, Q. H. (2016). Muti-objective topology optimization of an electric vehicle’s traction battery enclosure. Energy Procedia, 88, 874-880. 

  22. Chinese J. Mechanical Engineering G X Yang 32 1 1 2019 10.3901/JME.2019.05.001 Yang, G. X., Wang, M., Li, Q. and Ding, R. (2019). Methodology to evaluate fatigue damage of high-speed train welded bogie frames based on on-track dynamic stress test data. Chinese J. Mechanical Engineering 32, 1, 1-8. 

  23. J. Manufacturing Science and Engineering N Z Zhao 136 5 051003 2014 10.1115/1.4027878 Zhao, N. Z., Li, W., Cai, W. W. and Abell, J. A. (2014). A fatigue life study of ultrasonically welded lithium-ion battery tab joints based on electrical resistance. J. Manufacturing Science and Engineering 136, 5, 051003. 

  24. O C Zienkiewicz 2014 The Finite Element Method for Solid and Structural Mechanics Zienkiewicz, O. C., Taylor, R. L. and Fox, D. (2014). The Finite Element Method for Solid and Structural Mechanics. Elsevier. Amsterdam, Netherlands. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로