$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Improved accuracy and reduced uncertainty in greenhouse gas inventories by refining the IPCC emission factor for direct N2O emissions from nitrogen inputs to managed soils 원문보기

Global change biology, v.27 no.24 = no.24, 2021년, pp.6536 - 6550  

Hergoualc’h, Kristell (Center for International Forestry Research (CIFOR), Lima, Peru) ,  Mueller, Nathan (Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA) ,  Bernoux, Martial (Food and Agriculture Organization of the United Nations (FAO), Rome, Italy) ,  Kasimir, Äsa (University of Gothenburg, Gothenburg, Sweden) ,  van der Weerden, Tony J. (Invermay Agricultural Centre, AgResearch Ltd, Mosgiel, New Zealand) ,  Ogle, Stephen M. (Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA)

Abstract AI-Helper 아이콘AI-Helper

AbstractMost national GHG inventories estimating direct N2O emissions from managed soils rely on a default Tier 1 emission factor (EF1) amounting to 1% of nitrogen inputs. Recent research has, however, demonstrated the potential for refining the EF1 considering variables that are readily available a...

주제어

참고문헌 (66)

  1. Abalos , D. , Brown , S. E. , Vanderzaag , A. C. , Gordon , R. J. , Dunfield , K. E. , & Wagner‐Riddle , C. ( 2016 ). Micrometeorological measurements over 3 years reveal differences in N 2 O emissions between annual and perennial crops . Global Change Biology , 22 , 1244 – 1255 . 26491961 

  2. Albanito , F. , Lebender , U. , Cornulier , T. , Sapkota , T. B. , Brentrup , F. , Stirling , C. , & Hillier , J. ( 2017 ). Direct nitrous oxide emissions from tropical and sub‐tropical agricultural systems—A review and modelling of emission factors . Scientific Reports , 7 ( 1 ). 10.1038/srep44235 

  3. Bell , B. A. , Morgan , G. B. , Schoeneberger , J. A. , Loudermilk , B. L. , Kromrey , J. D. , & Ferron , J. M. ( 2010 ). Dancing the sample size limbo with mixed models: How low can you go . SAS Global Forum , 4 , 11 – 14 . 

  4. Bouwman , A. , & Boumans , L. ( 2002 ). Emissions of N 2 O and NO from fertilized fields: Summary of available measurement data . Global Biochemical Cycles , 16 , 1058 . 10.1029/2001GB001811 

  5. Bouwman , A. F. , Boumans , L. J. M. , & Batjes , N. H. ( 2002a ). Emissions of N 2 O and NO from fertilized fields: Summary of available measurement data . Global Biogeochemical Cycles , 16 , 6‐1 – 6‐13 . 

  6. Bouwman , A. F. , Boumans , L. J. M. , & Batjes , N. H. ( 2002b ). Modeling global annual N 2 O and NO emissions from fertilized fields . Global Biochemical Cycles , 16 . 10.1029/2001GB001812 

  7. Butterbach‐Bahl , K. , Baggs , E. M. , Dannenmann , M. , Kiese , R. , & Zechmeister‐Boltenstern , S. ( 2013 ). Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B , 368 , 20130122 . 

  8. Canada EaCC . ( 2020 ). National inventory report 1990–2018: Greenhouse gas sources and sinks in Canada . Canada's submission to the UNFCCC. https://unfccc.int/documents/224829 

  9. Cayuela , M. L. , Aguilera , E. , Sanz‐Cobena , A. , Adams , D. C. , Abalos , D. , Barton , L. , Ryals , R. , Silver , W. L. , Alfaro , M. A. , Pappa , V. A. , Smith , P. , Garnier , J. , Billen , G. , Bouwman , L. , Bondeau , A. , & Lassaletta , L. ( 2017 ). Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta‐analysis of available measurement data . Agriculture, Ecosystems & Environment , 238 , 25 – 35 . 10.1016/j.agee.2016.10.006 

  10. Charles , A. , Rochette , P. , Whalen , J. K. , Angers , D. A. , Chantigny , M. H. , & Bertrand , N. ( 2017 ). Global nitrous oxide emission factors from agricultural soils after addition of organic amendments: A meta‐analysis . Agriculture, Ecosystems & Environment , 236 , 88 – 98 . 

  11. China . ( 2018 ). The people's republic of China second biennial update report on climate change . https://unfccc.int/sites/default/files/resource/China%202BUR_English.pdf 

  12. Davidson , E. A. , Keller , M. , Erickson , H. E. , Verchot , L. V. , & Veldkamp , E. ( 2000 ). Testing a conceptual model of soil emissions of nitrous and nitric oxides . BioScience , 50 , 667 – 680 . 

  13. De Klein , C. , Novoa , R. S. A. , Ogle , S. , Smith , K. A. , Rochette , P. , Wirth , T. C. , McConkey , B. G. , Mosier , A. , & Rypdal , K. ( 2006 ). Chapter 11—N 2 O emissions from managed soils, and CO 2 emissions from lime and urea application . In S. Eggleston , L. Buendia , K. Miwa , T. Ngara , & K. Tanabe (Eds.), V4 agriculture, forestry and other land use, 2006 IPCC guidelines for national greenhouse gas inventories (pp. 11.1 – 11.54 ). Institute for Global Environmental Strategies . 

  14. Di Rienzo , J. A. , Casanoves , F. , Balzarini , M. G. , Gonzalez , L. , Tablada , M. , & Robledo , C. W. ( 2017 ). InfoStat versión 2017 . InfoStat Group, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba . http://www.infostat.com.ar 

  15. Eagle , A. J. , Mclellan , E. L. , Brawner , E. M. , Chantigny , M. H. , Davidson , E. A. , Dickey , J. B. , Linquist , B. A. , Maaz , T. M. , Pelster , D. E. , Pittelkow , C. M. , van Kessel , C. , Vyn , T. J. , & Cassman , K. G. ( 2020 ). Quantifying on‐farm nitrous oxide emission reductions in food supply chains . Earth's Future , 8 , e2020EF001504 . 

  16. Firestone , M. K. , & Davidson , E. A. ( 1989 ). Microbiological basis of NO and N 2 O production and consumption in soils . In M. O. Andreae & D. S. Schimel (Eds.), Exchange of trace gases between terrestrial ecosystems and the atmosphere (pp. 7 – 21 ). John Wiley and Sons Ltd . https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/92805 

  17. Gałecki , A. , & Burzykowski , T. ( 2013 ). Linear mixed‐effects models using R: A step‐by‐step approach . Springer . 

  18. Gelfand , I. , Shcherbak , I. , Millar , N. , Kravchenko , A. N. , & Robertson , G. P. ( 2016 ). Long‐term nitrous oxide fluxes in annual and perennial agricultural and unmanaged ecosystems in the upper Midwest USA . Global Change Biology , 22 , 3594 – 3607 . 27510313 

  19. Gerber , J. S. , Carlson , K. M. , Makowski , D. Mueller , N. D. , Garcia , I. , de Cortazar‐Atauri , P. , Havlík , M. H. , Launay , M. , O'Connell , C. S. , Smith , P. , & West , P. C. ( 2016 ). Spatially explicit estimates of N 2 O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management . Global Change Biology , 22 , 3383 – 3394 . 27185532 

  20. Grace , P. , Shcherbak , I. , Macdonald , B. , Scheer , C. , & Rowlings , D. ( 2016 ). Emission factors for estimating fertiliser‐induced nitrous oxide emissions from clay soils in Australia’s irrigated cotton industry . Soil Research , 54 , 598 – 603 . 10.1071/SR16091 

  21. Granli , T. , & Bøckman , O. C. ( 1996 ). Nitrous oxide (N 2 O) emissions from soils in warm climates . In N. Ahmad (Ed.), Nitrogen economy in tropical soils: Proceedings of the international symposium on nitrogen economy in tropical soils, held in Trinidad, W.I., January 9–14, 1994 (pp. 159 – 164 ). Springer . 

  22. Groffman , P. M. , Butterbach‐Bahl , K. , Fulweiler , R. W. , Gold , A. J. , Morse , J. L. , Stander , E. K. , Tague , C. , Tonitto , C. , & Vidon , P. ( 2009 ). Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models . Biogeochemistry , 93 , 49 – 77 . 10.1007/s10533-008-9277-5 

  23. Hénault , C. , Bourennane , H. , Ayzac , A. , Ratié , C. , Saby , N. P. A. , Cohan , J.‐P. , Eglin , T. , & Gall , C. L. ( 2019 ). Management of soil pH promotes nitrous oxide reduction and thus mitigates soil emissions of this greenhouse gas . Scientific Reports , 9 , 20182 . 10.1038/s41598-019-56694-3 31882900 

  24. Hénault , C. , Grossel , A. , Mary , B. , Roussel , M. , & Léonard , J. ( 2012 ). Nitrous oxide emission by agricultural soils: A review of spatial and temporal variability for mitigation . Pedosphere , 22 , 426 – 433 . 10.1016/S1002-0160(12)60029-0 

  25. Hergoualc’h , K. , Akiyama , H. , Bernoux , M. , Chirinda , N. , del Prado , A. , Kasimir , A. , MacDonald , J. D. , Ogle , S. M. , Regina , K. , & van der Weerden , T. J. ( 2019 ). Chapter 11: N 2 O emissions from managed soils and CO 2 emissions from lime and urea application . In E. Calvo Buendia , K. Tanabe , A. Kranjc , J. Baasansuren , M. S. N. Fukuda , A. Osako , Y. Pyrozhenko , P. Shermanau , & S. Federici (Eds.), 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories—Volume 4 agriculture, forestry and other land use (pp. 11.1 – 11.48 ). Intergovernmental Panel on Climate Change . 

  26. Hergoualc'h , K. , Skiba , U. , Harmand , J.‐M. , & Oliver , R. ( 2007 ). Processes responsible for the nitrous oxide emission from a Costa Rican Andosol under a coffee agroforestry plantation . Biology and Fertility of Soils , 43 , 787 – 795 . 10.1007/s00374-007-0168-z 

  27. Herrero , M. , Havlik , P. , Valin , H. , Notenbaert , A. , Rufino , M. C. , Thornton , P. K. , Blummel , M. , Weiss , F. , Grace , D. , & Obersteiner , M. ( 2013 ). Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems . Proceedings of the National Academy of Sciences of the United States of America , 110 , 20888 – 20893 . 10.1073/pnas.1308149110 24344273 

  28. Hoben , J. P. , Gehl , R. J. , Millar , N. , Grace , P. R. , & Robertson , G. P. ( 2011 ). Nonlinear nitrous oxide (N 2 O) response to nitrogen fertilizer in on‐farm corn crops of the US Midwest . Global Change Biology , 17 , 1140 – 1152 . 10.1111/j.1365-2486.2010.02349.x 

  29. Hox , J. J. ( 1998 ). Multilevel modeling: When and why . In I. Balderjahn , R. Mathar , & M. Schader (Eds.), Classification, data analysis, and data highways (pp. 147 – 154 ). Springer Verlag . 

  30. Janssens‐Maenhout , G. , Crippa , M. , Guizzardi , D. , Muntean , M. , Schaaf , E. , Dentener , F. , Bergamaschi , P. , Pagliari , V. , Olivier , J. G. J. , Peters , J. A. H. W. , van Aardenne , J. A. , Monni , S. , Ulrike Doering , A. M. , Petrescu , R. , Solazzo , E. , & Oreggioni , G. D. ( 2019 ). EDGAR v4.3.2 Global atlas of the three major greenhouse gas emissions for the period 1970–2012 . Earth System Science Data , 11 , 959 – 1002 . 

  31. Jia , G. , Shevliakova , E. , Artaxo , P. , De‐Docoudré , N. , Houghton , R. , House , J. , Kitajima , K. , Lennard , C. , Popp , A. , Sirin , A. , Sukumar , R. , Verchot , L. , & Sporre , M. ( 2019 ). Land‐climate interactions . In P. R. Shukla , J. Skea , E. Calvo Buendia , V. Masson‐Delmotte , H.‐O. Pörtner , D. C. Roberts , P. Zhai , R. Slade , S. Connors , R. van Diemen , M. Ferrat , E. Haughey , S. Luz , S. Neogi , M. Pathak , J. Petzold , J. Portugal Pereira , P. Vyas , E. Huntley 

  32. Knowles , R. ( 1982 ). Denitrification . Microbiological Reviews , 46 , 43 – 70 . 7045624 

  33. Liu , S. , Lin , F. , Wu , S. , Ji , C. , Sun , Y. I. , Jin , Y. , Li , S. , Li , Z. , & Zou , J. ( 2017 ). A meta‐analysis of fertilizer‐induced soil NO and combined with N 2 O emissions . Global Change Biology , 23 , 2520 – 2532 . 27570182 

  34. Ministry of Environment and Forests GOI . ( 2012 ). India. Second national communication to the United Nations framework convention on climate change . https://unfccc.int/resource/docs/natc/indnc2.pdf 

  35. Morley , N. , & Baggs , E. M. ( 2010 ). Carbon and oxygen controls on N 2 O and N 2 production during nitrate reduction . Soil Biology and Biochemistry , 42 , 1864 – 1871 . 10.1016/j.soilbio.2010.07.008 

  36. Mueller , N. D. , Gerber , J. S. , Johnston , M. , Ray , D. K. , Ramankutty , N. , & Foley , J. A. ( 2012 ). Closing yield gaps through nutrient and water management . Nature , 490 , 254 – 257 . 10.1038/nature11420 22932270 

  37. Novoa , R. , & Tejeda , H. R. ( 2006 ). Evaluation of the N 2 O emissions from N in plant residues as affected by environmental and management factors . Nutrient Cycling in Agroecosystems , 75 , 29 – 46 . 

  38. Ogle , S. M. , Buendia , L. , Butterbach‐Bahl , K. , Breidt , F. J. , Hartman , M. , Yagi , K. , Nayamuth , R. , Spencer , S. , Wirth , T. , & Smith , P. ( 2013 ). Advancing national greenhouse gas inventories for agriculture in developing countries: Improving activity data, emission factors, and software technology . Environmental Research Letters , 8 , 015030 . 10.1088/1748-9326/8/1/015030 

  39. Ogle , S. M. , Butterbach‐Bahl , K. , Cardenas , L. , Skiba , U. , & Scheer , C. ( 2020 ). From research to policy: Optimizing the design of a national monitoring system to mitigate soil nitrous oxide emissions . Current Opinion in Environmental Sustainability , 47 , 28 – 36 . 10.1016/j.cosust.2020.06.003 

  40. Oktarita , S. , Hergoualc’h , K. , Anwar , S. , & Verchot , L. V. ( 2017 ). Substantial N 2 O emissions from peat decomposition and N fertilization in an oil palm plantation exacerbated by hotspots . Environmental Research Letters , 12 , 104007 . 

  41. Phalan , B. , Bertzky , M. , Butchart , S. H. M. , Donald , P. F. , Scharlemann , J. P. W. , Stattersfield , A. J. , & Balmford , A. ( 2013 ). Crop expansion and conservation priorities in tropical countries . PLoS ONE , 8 , e51759 . 10.1371/journal.pone.0051759 23326316 

  42. Philibert , A. , Loyce , C. , & Makowski , D. ( 2012 ). Quantifying uncertainties in N 2 O emission due to N fertilizer application in cultivated areas . PLoS ONE , 7 , 1 – 9 . 10.1371/journal.pone.0050950 

  43. Portmann , F. T. , Siebert , S. , & Döll , P. ( 2010 ). MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high‐resolution data set for agricultural and hydrological modeling . Global Biogeochemical Cycles , 24 . 10.1029/2008GB003435 

  44. R Core Team . ( 2020 ). R: A language and environment for statistical computing . R Foundation for Statistical Computing . https://www.R‐project.org/ 

  45. Reddy , S. , Panichelli , L. , Waterworth , R. M. , Federici , S. , Green , C. , Jonckheere , I. , Kahuri , S. , Kurz , W. A. , de Ligt , R. , Ometto , J. P. , Petersson , H. , Takahiro , E. , Paul , T. , Tullis , J. , Somogyi , Z. , Pandya , M. , Rocha , M. T. , & Suzuki , K. ( 2019 ). Chapter 3: Consistent representation of land . In E. Calvo Buendia , K. Tanabe , A. Kranjc , J. Baasansuren , M. Fukuda , S. Ngarize , A. Osako , Y. Pyrozhenko , P. Shermanau , & S. Federici (Eds.), 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories—Volume 4 agriculture, forestry and other land use (pp. 3.1 – 3.55 ). Intergovernmental Panel on Climate Change . 

  46. Rochette , P. , Liang , C. , Pelster , D. , Bergeron , O. , Lemke , R. , Kroebel , R. , MacDonald , D. , Yan , W. , & Flemming , C. ( 2018 ). Soil nitrous oxide emissions from agricultural soils in Canada: Exploring relationships with soil, crop and climatic variables . Agriculture, Ecosystems and Environment , 254 , 69 – 81 . 10.1016/j.agee.2017.10.021 

  47. Shcherbak , I. , Millar , N. , & Robertson , G. P. ( 2014 ). A global meta‐analysis of the nonlinear response of soil nitrous oxide (N 2 O) emissions to fertilizer nitrogen . Proceedings of the National Academy of Sciences of the United States of America , 111 , 9199 – 9204 . 10.1073/pnas.1322434111 24927583 

  48. Skiba , U. , Hergoualc’h , K. , Drewer , J. , Meijide , A. , & Knohl , A. ( 2020 ). Oil palm plantations are large sources of nitrous oxide, but where are the data to quantify the impact on global warming? Current Opinion in Environmental Sustainability , 47 , 81 – 88 . 10.1016/j.cosust.2020.08.019 

  49. Skiba , U. , & Smith , K. A. ( 2000 ). The control of nitrous oxide emissions from agricultural and natural soils . Chemosphere: Global Change Science , 2 , 379 – 386 . 

  50. Stehfest , E. , & Bouwman , L. ( 2006 ). N 2 O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions . Nutrient Cycling in Agroecosystems , 74 , 207 – 228 . 10.1007/s10705-006-9000-7 

  51. Thompson , K. A. , Bent , E. , Abalos , D. , Wagner‐Riddle , C. , & Dunfield , K. E. ( 2016 ). Soil microbial communities as potential regulators of in situ N 2 O fluxes in annual and perennial cropping systems . Soil Biology and Biochemistry , 103 , 262 – 273 . 10.1016/j.soilbio.2016.08.030 

  52. Tian , H. , Xu , R. , Canadell , J. G. , Thompson , R. L. , Winiwarter , W. , Suntharalingam , P. , Davidson , E. A. , Ciais , P. , Jackson , R. B. , Janssens‐Maenhout , G. , Prather , M. J. , Regnier , P. , Pan , N. , Pan , S. , Peters , G. P. , Shi , H. , Tubiello , F. N. , Zaehle , S. , Zhou , F. , … Yao , Y. ( 2020 ). A comprehensive quantification of global nitrous oxide sources and sinks . Nature , 586 , 248 – 256 . 10.1038/s41586-020-2780-0 33028999 

  53. Tubiello , F. N. , Salvatore , M. , Rossi , S. , Ferrara , A. , Fitton , N. , & Smith , P. ( 2013 ). The FAOSTAT database of greenhouse gas emissions from agriculture . Environmental Research Letters , 8 , 015009 . 

  54. USDA . ( 2017 ). Chapter 3. Examination and description of soil profiles . In C. Ditzler , K. Scheffe , & H. C. Monger (Eds.), Soil science division staff. Soil survey manual. USDA Handbook ( 18 pp). Government Printing Office . 

  55. US‐EPA . ( 2021 ). Inventory of U.S. greenhouse gas emissions and . Environmental Protection Agency https://www.epa.gov/ghgemissions/inventory‐us‐greenhouse‐gas‐emissions‐and‐sinks‐1990‐2019 

  56. van der Weerden , T. J. , Cox , N. , Luo , J. , Di , H. J. , Podolyan , A. , Phillips , R. L. , Saggar , S. , de Klein , C. , Ettema , P. , & Rys , G. ( 2016 ). Refining the New Zealand nitrous oxide emission factor for urea fertiliser and farm dairy effluent . Agriculture, Ecosystems & Environment , 222 , 133 – 137 . 10.1016/j.agee.2016.02.007 

  57. van Groenigen , J. W. , Velthof , G. L. , Oenema , O. , Van Groenigen , K. J. , & Van Kessel , C. ( 2010 ). Towards an agronomic assessment of N 2 O emissions: A case study for arable crops . European Journal of Soil Science , 61 , 903 – 913 . 10.1111/j.1365-2389.2009.01217.x 

  58. van Lent , J. , Hergoualc’h , K. , & Verchot , L. V. ( 2015 ). Soil N 2 O and NO emissions from land use and land‐use change in the tropics and subtropics: A meta‐analysis . Biogeosciences , 12 , 7299 – 7313 . 

  59. Vico , G. , & Brunsell , N. A. ( 2018 ). Tradeoffs between water requirements and yield stability in annual vs. perennial crops . Advances in Water Resources , 112 , 189 – 202 . 10.1016/j.advwatres.2017.12.014 

  60. Wang , Y. , Guo , J. , Vogt , R. D. , Mulder , J. , Wang , J. , & Zhang , X. ( 2018 ). Soil pH as the chief modifier for regional nitrous oxide emissions: New evidence and implications for global estimates and mitigation . Global Change Biology , 24 , e617 – e626 . 10.1111/gcb.13966 29171128 

  61. Wells , K. C. , Millet , D. B. , Bousserez , N. , Henze , D. K. , Griffis , T. J. , Chaliyakunnel , S. , Dlugokencky , E. J. , Saikawa , E. , Xiang , G. , Prinn , R. G. , O'Doherty , S. , Young , D. , Weiss , R. F. , Dutton , G. S. , Elkins , J. W. , Krummel , P. B. , Langenfelds , R. , & Paul Steele , L. ( 2018 ). Top‐down constraints on global N 2 O emissions at optimal resolution: Application of a new dimension reduction technique . Atmospheric Chemistry and Physics , 18 , 735 – 756 . 

  62. West , P. C. , Gerber , J. S. , Engstrom , P. M. , Mueller , N. D. , Brauman , K. A. , Carlson , K. M. , Cassidy , E. S. , Johnston , M. , MacDonald , G. K. , Ray , D. K. , & Siebert , S. ( 2014 ). Leverage points for improving global food security and the environment . Science , 345 , 325 – 328 . 10.1126/science.1246067 25035492 

  63. Zhang , X. , Fang , Q. , Zhang , T. , Ma , W. , Velthof , G. L. , Hou , Y. , Oenema , O. , & Zhang , F. ( 2020 ). Benefits and trade‐offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta‐analysis . Global Change Biology , 26 , 888 – 900 . 10.1111/gcb.14826 31495039 

  64. Zhang , X. , Zou , T. , Lassaletta , L. , Mueller , N. D. , Tubiello , F. N. , Lisk , M. D. , Lu , C. , Conant , R. T. , Dorich , C. D. , Gerber , J. , Tian , H. , Bruulsema , T. , Maaz , T. M. C. , Nishina , K. , Bodirsky , B. L. , Popp , A. , Bouwman , L. , Beusen , A. , Chang , J. , … Davidson , E. A. ( 2021 ). Quantification of global and national nitrogen budgets for crop production . Nature Food , 2 ( 7 ), 529 – 540 . 10.1038/s43016-021-00318-5 

  65. Zhou , M. , Zhu , B. , Wang , S. , Zhu , X. , Vereecken , H. , & Brüggemann , N. ( 2017 ). Stimulation of N 2 O emission by manure application to agricultural soils may largely offset carbon benefits: A global meta‐analysis . Global Change Biology , 23 , 4068 – 4083 . 28142211 

  66. Zhu , Y. , Merbold , L. , Leitner , S. , Xia , L. , Pelster , D. E. , Diaz‐Pines , E. , Abwanda , S. , Mutuo , P. M. , & Butterbach‐Bahl , K. ( 2020 ). Influence of soil properties on N 2 O and CO 2 emissions from excreta deposited on tropical pastures in Kenya . Soil Biology and Biochemistry , 140 , 107636 . 10.1016/j.soilbio.2019.107636 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로