최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Frontiers in molecular neuroscience, v.14, 2021년, pp.712576 -
Yoo, Ye-Eun (Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon , South Korea) , Lee, Seungjoon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon , South Korea) , Kim, Woohyun (Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon , South Korea) , Kim, Hyosang (Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon , South Korea) , Chung, Changuk (Center for Synaptic Brain Dysfunctions, Institute for Basic Science , Daejeon , South Korea) , Ha, Seungmin (Center for Synaptic Brain Dysfunctions, Institute for Basic Science , Daejeon , South Korea) , Park, Jinsu (Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology , Daejeon , South Korea) , Chung, Yeonseung (Department of Mathematical) , Kang, Hyojin , Kim, Eunjoon
Shank2 is an excitatory postsynaptic scaffolding protein strongly implicated in autism spectrum disorders (ASDs). Shank2-mutant mice with a homozygous deletion of exons 6 and 7 (Shank2-KO mice) show decreased NMDA receptor (NMDAR) function and autistic-like behaviors at juvenile [∼postnatal day ...
Abrahams B. S. Arking D. E. Campbell D. B. Mefford H. C. Morrow E. M. Weiss L. A. ( 2013 ). SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism 4 : 36 . 10.1186/2040-2392-4-36 24090431
Albright A. V. Gonzalez-Scarano F. ( 2004 ). Microarray analysis of activated mixed glial (microglia) and monocyte-derived macrophage gene expression. J. Neuroimmunol. 157 27 – 38 . 10.1016/j.jneuroim.2004.09.007 15579277
Bai Y. Qiu S. Li Y. Li Y. Zhong W. Shi M. ( 2018 ). Genetic association between SHANK2 polymorphisms and susceptibility to autism spectrum disorder. IUBMB Life 70 763 – 776 . 10.1002/iub.1876 29934968
Barnard R. A. Pomaville M. B. O’Roak B. J. ( 2015 ). Mutations and modeling of the chromatin remodeler CHD8 define an emerging autism etiology. Front. Neurosci. 9 : 477 . 10.3389/fnins.2015.00477 26733790
Beconi M. G. Howland D. Park L. Lyons K. Giuliano J. Dominguez C. ( 2011 ). Pharmacokinetics of memantine in rats and mice. PLoS Curr. 3 : RRN1291 . 10.1371/currents.RRN1291 22307216
Berkel S. Marshall C. R. Weiss B. Howe J. Roeth R. Moog U. ( 2010 ). Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat. Genet. 42 489 – 491 . 10.1038/ng.589 20473310
Berkel S. Tang W. Trevino M. Vogt M. Obenhaus H. A. Gass P. ( 2011 ). Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology. Hum. Mol. Genet. 21 344 – 357 . 10.1093/hmg/ddr470 21994763
Bidinosti M. Botta P. Kruttner S. Proenca C. C. Stoehr N. Bernhard M. ( 2016 ). CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science 351 1199 – 1203 . 10.1126/science.aad5487 26847545
Boeckers T. M. Bockmann J. Kreutz M. R. Gundelfinger E. D. ( 2002 ). ProSAP/shank proteins – a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J. Neurochem. 81 903 – 910 . 12065602
Boeckers T. M. Kreutz M. R. Winter C. Zuschratter W. Smalla K. H. Sanmarti-Vila L. ( 1999 ). Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density. J. Neurosci. 19 6506 – 6518 . 10414979
Borrie S. C. Brems H. Legius E. Bagni C. ( 2017 ). Cognitive dysfunctions in intellectual disabilities: the contributions of the Ras-MAPK and PI3K-AKT-mTOR pathways. Annu. Rev. Genomics Hum. Genet. 18 115 – 142 . 28859574
Cahoy J. D. Emery B. Kaushal A. Foo L. C. Zamanian J. L. Christopherson K. S. ( 2008 ). A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28 264 – 278 . 10.1523/JNEUROSCI.4178-07.2008 18171944
Chen E. Y. Tan C. M. Kou Y. Duan Q. Wang Z. Meirelles G. V. ( 2013 ). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14 : 128 . 10.1186/1471-2105-14-128 23586463
Chilian B. Abdollahpour H. Bierhals T. Haltrich I. Fekete G. Nagel I. ( 2013 ). Dysfunction of SHANK2 and CHRNA7 in a patient with intellectual disability and language impairment supports genetic epistasis of the two loci. Clin. Genet. 84 560 – 565 . 10.1111/cge.12105 23350639
Ching T. Huang S. Garmire L. X. ( 2014 ). Power analysis and sample size estimation for RNA-Seq differential expression. RNA 20 1684 – 1696 . 10.1261/rna.046011.114 25246651
Chung C. Ha S. Kang H. Lee J. Um S. M. Yan H. ( 2019 ). Early correction of N-methyl-D-aspartate receptor function improves autistic-like social behaviors in adult shank2(-/-) mice. Biol. Psychiatry 85 534 – 543 . 10.1016/j.biopsych.2018.09.025 30466882
Condomitti G. de Wit J. ( 2018 ). Heparan sulfate proteoglycans as emerging players in synaptic specificity. Front. Mol. Neurosci. 11 : 14 .
Costa-Mattioli M. Monteggia L. M. ( 2013 ). mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat. Neurosci. 16 1537 – 1543 . 10.1038/nn.3546 24165680
Costas J. ( 2015 ). The role of SHANK2 rare variants in schizophrenia susceptibility. Mol. Psychiatry 20 : 1486 . 10.1038/mp.2015.119 26303661
Darnell J. C. Van Driesche S. J. Zhang C. Hung K. Y. Mele A. Fraser C. E. ( 2011 ). FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146 247 – 261 . 10.1016/j.cell.2011.06.013 21784246
De Rubeis S. He X. Goldberg A. P. Poultney C. S. Samocha K. Cicek A. E. ( 2014 ). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515 209 – 215 . 10.1038/nature13772 25363760
Dembitskaya Y. Gavrilov N. Kraev I. Doronin M. Tang Y. Li L. ( 2021 ). Attenuation of the extracellular matrix increases the number of synapses but suppresses synaptic plasticity through upregulation of SK channels. Cell Calcium 96 : 102406 . 10.1016/j.ceca.2021.102406 33848733
Diez-Guerra F. J. ( 2010 ). Neurogranin, a link between calcium/calmodulin and protein kinase C signaling in synaptic plasticity. IUBMB Life 62 597 – 606 . 10.1002/iub.357 20665622
Du Y. Weed S. A. Xiong W. C. Marshall T. D. Parsons J. T. ( 1998 ). Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Mol. Cell. Biol. 18 5838 – 5851 . 9742101
Fawcett J. W. Oohashi T. Pizzorusso T. ( 2019 ). The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat. Rev. Neurosci. 20 451 – 465 . 10.1038/s41583-019-0196-3 31263252
Folch J. Busquets O. Ettcheto M. Sanchez-Lopez E. Castro-Torres R. D. Verdaguer E. ( 2018 ). Memantine for the treatment of dementia: a review on its current and future applications. J. Alzheimers Dis. 62 1223 – 1240 . 10.3233/JAD-170672 29254093
Frye R. E. ( 2020 ). Mitochondrial dysfunction in autism spectrum disorder: unique abnormalities and targeted treatments. Semin. Pediatr. Neurol. 35 : 100829 . 10.1016/j.spen.2020.100829 32892956
Garbett K. Ebert P. J. Mitchell A. Lintas C. Manzi B. Mirnics K. ( 2008 ). Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol. Dis. 30 303 – 311 . 10.1016/j.nbd.2008.01.012 18378158
Goodman J. V. Bonni A. ( 2019 ). Regulation of neuronal connectivity in the mammalian brain by chromatin remodeling. Curr. Opin. Neurobiol. 59 59 – 68 . 10.1016/j.conb.2019.04.010 31146125
Grabrucker A. M. Schmeisser M. J. Schoen M. Boeckers T. M. ( 2011 ). Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol. 21 594 – 603 . 10.1016/j.tcb.2011.07.003 21840719
Grabrucker S. Pagano J. Schweizer J. Urrutia-Ruiz C. Schon M. Thome K. ( 2021 ). Activation of the medial preoptic area (MPOA) ameliorates loss of maternal behavior in a Shank2 mouse model for autism. EMBO J. 40 : e104267 . 10.15252/embj.2019104267 33491217
Guilmatre A. Huguet G. Delorme R. Bourgeron T. ( 2014 ). The emerging role of SHANK genes in neuropsychiatric disorders. Dev. Neurobiol. 74 113 – 122 . 10.1002/dneu.22128 24124131
Gupta S. Ellis S. E. Ashar F. N. Moes A. Bader J. S. Zhan J. ( 2014 ). Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat. Commun. 5 : 5748 . 10.1038/ncomms6748 25494366
Hoeffer C. A. Klann E. ( 2010 ). mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 33 67 – 75 . 10.1016/j.tins.2009.11.003 19963289
Hollis F. Kanellopoulos A. K. Bagni C. ( 2017 ). Mitochondrial dysfunction in autism spectrum disorder: clinical features and perspectives. Curr. Opin. Neurobiol. 45 178 – 187 . 10.1016/j.conb.2017.05.018 28628841
Homann O. R. Misura K. Lamas E. Sandrock R. W. Nelson P. McDonough S. I. ( 2016 ). Whole-genome sequencing in multiplex families with psychoses reveals mutations in the SHANK2 and SMARCA1 genes segregating with illness. Mol. Psychiatry 21 1690 – 1695 . 10.1038/mp.2016.24 27001614
Huang da W. Sherman B. T. Lempicki R. A. ( 2009 ). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4 44 – 57 . 10.1038/nprot.2008.211 19131956
Iossifov I. O’Roak B. J. Sanders S. J. Ronemus M. Krumm N. Levy D. ( 2014 ). The contribution of de novo coding mutations to autism spectrum disorder. Nature 515 216 – 221 . 10.1038/nature13908 25363768
Isserlin R. Merico D. Voisin V. Bader G. D. ( 2014 ). Enrichment map – a cytoscape app to visualize and explore OMICs pathway enrichment results. F1000Res. 3 : 141 . 10.12688/f1000research.4536.1 25075306
Kang H. J. Kawasawa Y. I. Cheng F. Zhu Y. Xu X. Li M. ( 2011 ). Spatio-temporal transcriptome of the human brain. Nature 478 483 – 489 . 10.1038/nature10523 22031440
Kim E. Sheng M. ( 2004 ). PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5 771 – 781 . 10.1038/nrn1517 15378037
Koopmans F. van Nierop P. Andres-Alonso M. Byrnes A. Cijsouw T. Coba M. P. ( 2019 ). SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103 217 – 234.e4 . 10.1016/j.neuron.2019.05.002 31171447
Kuleshov M. V. Jones M. R. Rouillard A. D. Fernandez N. F. Duan Q. Wang Z. ( 2016 ). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44 W90 – W97 . 10.1093/nar/gkw377 27141961
Leblond C. S. Heinrich J. Delorme R. Proepper C. Betancur C. Huguet G. ( 2012 ). Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet. 8 : e1002521 . 10.1371/journal.pgen.1002521 22346768
Leblond C. S. Nava C. Polge A. Gauthier J. Huguet G. Lumbroso S. ( 2014 ). Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. 10 : e1004580 . 10.1371/journal.pgen.1004580 25188300
Lee A. Hirabayashi Y. Kwon S. K. Lewis T. L. Jr. Polleux F. ( 2018 ). Emerging roles of mitochondria in synaptic transmission and neurodegeneration. Curr. Opin. Physiol. 3 82 – 93 . 10.1016/j.cophys.2018.03.009 30320242
Lee E. J. Lee H. Huang T. N. Chung C. Shin W. Kim K. ( 2015 ). Trans-synaptic zinc mobilization improves social interaction in two mouse models of autism through NMDAR activation. Nat. Commun. 6 : 7168 . 10.1038/ncomms8168 25981743
Lee Y. Kim S. G. Lee B. Zhang Y. Kim Y. Kim S. ( 2017 ). Striatal transcriptome and interactome analysis of shank3-overexpressing mice reveals the connectivity between shank3 and mTORC1 signaling. Front. Mol. Neurosci. 10 : 201 . 10.3389/fnmol.2017.00201 28701918
Li Z. Okamoto K. Hayashi Y. Sheng M. ( 2004 ). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119 873 – 887 . 10.1016/j.cell.2004.11.003 15607982
Lim S. Naisbitt S. Yoon J. Hwang J. I. Suh P. G. Sheng M. ( 1999 ). Characterization of the shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J. Biol. Chem. 274 29510 – 29518 . 10506216
Lipton S. A. ( 2006 ). Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat. Rev. Drug Discov. 5 160 – 170 . 10.1038/nrd1958 16424917
Lista S. Hampel H. ( 2017 ). Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease. Expert Rev. Neurother. 17 47 – 57 . 10.1080/14737175.2016.1204234 27332958
Liu Y. Du Y. Liu W. Yang C. Liu Y. Wang H. ( 2013 ). Lack of association between NLGN3, NLGN4, SHANK2 and SHANK3 gene variants and autism spectrum disorder in a Chinese population. PLoS One 8 : e56639 . 10.1371/journal.pone.0056639 23468870
Love M. I. Huber W. Anders S. ( 2014 ). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 : 550 . 10.1186/s13059-014-0550-8 25516281
Lu Z. A. Mu W. Osborne L. M. Cordner Z. A. ( 2018 ). Eighteen-year-old man with autism, obsessive compulsive disorder and a SHANK2 variant presents with severe anorexia that responds to high-dose fluoxetine. BMJ Case Rep. 2018 : bcr2018225119 . 10.1136/bcr-2018-225119 29991577
Ma K. Qin L. Matas E. Duffney L. J. Liu A. Yan Z. ( 2018 ). Histone deacetylase inhibitor MS-275 restores social and synaptic function in a Shank3-deficient mouse model of autism. Neuropsychopharmacology 43 1779 – 1788 . 10.1038/s41386-018-0073-1 29760409
Matsunaga S. Kishi T. Iwata N. ( 2015 ). Memantine monotherapy for Alzheimer’s disease: a systematic review and meta-analysis. PLoS One 10 : e0123289 . 10.1371/journal.pone.0123289 25860130
Merico D. Isserlin R. Stueker O. Emili A. Bader G. D. ( 2010 ). Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5 : e13984 . 10.1371/journal.pone.0013984 21085593
Moffat J. J. Smith A. L. Jung E. M. Ka M. Kim W. Y. ( 2021 ). Neurobiology of ARID1B haploinsufficiency related to neurodevelopmental and psychiatric disorders. Mol. Psychiatry 10.1038/s41380-021-01060-x [Online ahead of print]. 33686214
Mootha V. K. Lindgren C. M. Eriksson K. F. Subramanian A. Sihag S. Lehar J. ( 2003 ). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34 267 – 273 . 10.1038/ng1180 12808457
Morita M. Gravel S. P. Hulea L. Larsson O. Pollak M. St-Pierre J. ( 2015 ). mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle 14 473 – 480 . 10.4161/15384101.2014.991572 25590164
Mossa A. Giona F. Pagano J. Sala C. Verpelli C. ( 2017 ). SHANK genes in autism: defining therapeutic targets. Prog. Neuropsychopharmacol. Biol. Psychiatry 84(Pt B) 416 – 423 . 10.1016/j.pnpbp.2017.11.019 29175319
Naisbitt S. Kim E. Tu J. C. Xiao B. Sala C. Valtschanoff J. ( 1999 ). Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23 569 – 582 . 10433268
Parikshak N. N. Luo R. Zhang A. Won H. Lowe J. K. Chandran V. ( 2013 ). Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155 1008 – 1021 . 24267887
Parikshak N. N. Swarup V. Belgard T. G. Irimia M. Ramaswami G. Gandal M. J. ( 2016 ). Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 540 423 – 427 . 10.1038/nature20612 27919067
Patro R. Duggal G. Love M. I. Irizarry R. A. Kingsford C. ( 2017 ). Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14 417 – 419 . 10.1038/nmeth.4197 28263959
Peykov S. Berkel S. Degenhardt F. Rietschel M. Nothen M. M. Rappold G. A. ( 2015a ). Rare SHANK2 variants in schizophrenia. Mol. Psychiatry 20 1487 – 1488 . 10.1038/mp.2015.122 26303658
Peykov S. Berkel S. Schoen M. Weiss K. Degenhardt F. Strohmaier J. ( 2015b ). Identification and functional characterization of rare SHANK2 variants in schizophrenia. Mol. Psychiatry 20 1489 – 1498 . 10.1038/mp.2014.172 25560758
Pinero J. Ramirez-Anguita J. M. Sauch-Pitarch J. Ronzano F. Centeno E. Sanz F. ( 2020 ). The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48 D845 – D855 . 10.1093/nar/gkz1021 31680165
Pinto D. Pagnamenta A. T. Klei L. Anney R. Merico D. Regan R. ( 2010 ). Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466 368 – 372 . 10.1038/nature09146 20531469
Qin L. Ma K. Wang Z. J. Hu Z. Matas E. Wei J. ( 2018 ). Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat. Neurosci. 21 564 – 575 . 10.1038/s41593-018-0110-8 29531362
Rauch A. Wieczorek D. Graf E. Wieland T. Endele S. Schwarzmayr T. ( 2012 ). Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380 1674 – 1682 . 10.1016/S0140-6736(12)61480-9 23020937
Rojas-Charry L. Nardi L. Methner A. Schmeisser M. J. ( 2021 ). Abnormalities of synaptic mitochondria in autism spectrum disorder and related neurodevelopmental disorders. J. Mol. Med. 99 161 – 178 . 10.1007/s00109-020-02018-2 33340060
Ronan J. L. Wu W. Crabtree G. R. ( 2013 ). From neural development to cognition: unexpected roles for chromatin. Nat. Rev. Genet. 14 347 – 359 . 10.1038/nrg3413 23568486
Sala C. Vicidomini C. Bigi I. Mossa A. Verpelli C. ( 2015 ). Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders. J. Neurochem. 135 849 – 858 . 10.1111/jnc.13232 26338675
Sanders S. J. Murtha M. T. Gupta A. R. Murdoch J. D. Raubeson M. J. Willsey A. J. ( 2012 ). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485 237 – 241 . 10.1038/nature10945 22495306
Santini E. Klann E. ( 2014 ). Reciprocal signaling between translational control pathways and synaptic proteins in autism spectrum disorders. Sci. Signal. 7 : re10 . 10.1126/scisignal.2005832 25351249
Satterstrom F. K. Kosmicki J. A. Wang J. Breen M. S. De Rubeis S. An J. Y. ( 2020 ). Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180 568 – 584.e23 . 10.1016/j.cell.2019.12.036 31981491
Schmeisser M. J. Ey E. Wegener S. Bockmann J. Stempel V. Kuebler A. ( 2012 ). Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486 256 – 260 . 22699619
Sheng M. Kim E. ( 2000 ). The Shank family of scaffold proteins. J. Cell Sci. 113(Pt 11) 1851 – 1856 . 10806096
Sheng Z. H. Cai Q. ( 2012 ). Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat. Rev. Neurosci. 13 77 – 93 . 10.1038/nrn3156 22218207
Soneson C. Love M. I. Robinson M. D. ( 2015 ). Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4 : 1521 . 10.12688/f1000research.7563.2 26925227
Song I. Dityatev A. ( 2018 ). Crosstalk between glia, extracellular matrix and neurons. Brain Res. Bull. 136 101 – 108 . 10.1016/j.brainresbull.2017.03.003 28284900
Subramanian A. Tamayo P. Mootha V. K. Mukherjee S. Ebert B. L. Gillette M. A. ( 2005 ). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102 15545 – 15550 . 10.1073/pnas.0506580102 16199517
Switon K. Kotulska K. Janusz-Kaminska A. Zmorzynska J. Jaworski J. ( 2017 ). Molecular neurobiology of mTOR. Neuroscience 341 112 – 153 . 10.1016/j.neuroscience.2016.11.017 27889578
Velmeshev D. Magistri M. Mazza E. M. C. Lally P. Khoury N. D’Elia E. R. ( 2020 ). Cell-type-specific analysis of molecular pathology in autism identifies common genes and pathways affected across neocortical regions. Mol. Neurobiol. 57 2279 – 2289 . 10.1007/s12035-020-01879-5 32008165
Velmeshev D. Schirmer L. Jung D. Haeussler M. Perez Y. Mayer S. ( 2019 ). Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364 685 – 689 . 10.1126/science.aav8130 31097668
Verpelli C. Pagano J. Sala C. ( 2019 ). The up and down of the N-methyl-D-aspartate receptor that causes autism. Biol. Psychiatry 85 530 – 531 . 10.1016/j.biopsych.2019.01.020 30871688
Voineagu I. Wang X. Johnston P. Lowe J. K. Tian Y. Horvath S. ( 2011 ). Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474 380 – 384 . 10.1038/nature10110 21614001
Vos M. Lauwers E. Verstreken P. ( 2010 ). Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Front. Synaptic Neurosci. 2 : 139 . 10.3389/fnsyn.2010.00139 21423525
Wang T. Hoekzema K. Vecchio D. Wu H. Sulovari A. Coe B. P. ( 2020 ). Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nat. Commun. 11 : 4932 . 10.1038/s41467-020-18723-y 33004838
Wang Z. J. Zhong P. Ma K. Seo J. S. Yang F. Hu Z. ( 2019 ). Amelioration of autism-like social deficits by targeting histone methyltransferases EHMT1/2 in Shank3-deficient mice. Mol. Psychiatry 25 2517 – 2533 . 10.1038/s41380-019-0351-2 30659288
Werling D. M. Parikshak N. N. Geschwind D. H. ( 2016 ). Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders. Nat. Commun. 7 : 10717 . 10.1038/ncomms10717 26892004
Winden K. D. Ebrahimi-Fakhari D. Sahin M. ( 2018 ). Abnormal mTOR activation in autism. Annu. Rev. Neurosci. 41 1 – 23 . 10.1146/annurev-neuro-080317-061747 29490194
Won H. Lee H. R. Gee H. Y. Mah W. Kim J. I. Lee J. ( 2012 ). Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486 261 – 265 . 10.1038/nature11208 22699620
Xu L. M. Li J. R. Huang Y. Zhao M. Tang X. Wei L. ( 2012 ). AutismKB: an evidence-based knowledgebase of autism genetics. Nucleic Acids Res. 40 D1016 – D1022 . 10.1093/nar/gkr1145 22139918
Yang C. Li J. Wu Q. Yang X. Huang A. Y. Zhang J. ( 2018 ). AutismKB 2.0: a knowledgebase for the genetic evidence of autism spectrum disorder. Database 2018 : bay106 . 10.1093/database/bay106 30339214
Yuen R. K. C. Merico D. Bookman M. Howe J. L. Thiruvahindrapuram B. Patel R. V. ( 2017 ). Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 20 602 – 611 . 10.1038/nn.4524 28263302
Zaslavsky K. Zhang W. B. McCready F. P. Rodrigues D. C. Deneault E. Loo C. ( 2019 ). SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons. Nat. Neurosci. 22 556 – 564 . 10.1038/s41593-019-0365-8 30911184
Zeisel A. Munoz-Manchado A. B. Codeluppi S. Lonnerberg P. La Manno G. Jureus A. ( 2015 ). Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347 1138 – 1142 . 10.1126/science.aaa1934 25700174
Zhang F. Rein B. Zhong P. Shwani T. Conrow-Graham M. Wang Z. J. ( 2021 ). Synergistic inhibition of histone modifiers produces therapeutic effects in adult Shank3-deficient mice. Transl. Psychiatry 11 : 99 . 10.1038/s41398-021-01233-w 33542189
Zhu L. Wang X. Li X. L. Towers A. Cao X. Wang P. ( 2014 ). Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum. Mol. Genet. 23 1563 – 1578 . 10.1093/hmg/ddt547 24186872
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.