$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Early Chronic Memantine Treatment-Induced Transcriptomic Changes in Wild-Type and Shank2 -Mutant Mice 원문보기

Frontiers in molecular neuroscience, v.14, 2021년, pp.712576 -   

Yoo, Ye-Eun (Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon , South Korea) ,  Lee, Seungjoon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon , South Korea) ,  Kim, Woohyun (Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon , South Korea) ,  Kim, Hyosang (Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon , South Korea) ,  Chung, Changuk (Center for Synaptic Brain Dysfunctions, Institute for Basic Science , Daejeon , South Korea) ,  Ha, Seungmin (Center for Synaptic Brain Dysfunctions, Institute for Basic Science , Daejeon , South Korea) ,  Park, Jinsu (Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology , Daejeon , South Korea) ,  Chung, Yeonseung (Department of Mathematical) ,  Kang, Hyojin ,  Kim, Eunjoon

Abstract AI-Helper 아이콘AI-Helper

Shank2 is an excitatory postsynaptic scaffolding protein strongly implicated in autism spectrum disorders (ASDs). Shank2-mutant mice with a homozygous deletion of exons 6 and 7 (Shank2-KO mice) show decreased NMDA receptor (NMDAR) function and autistic-like behaviors at juvenile [∼postnatal day ...

Keyword

참고문헌 (104)

  1. Abrahams B. S. Arking D. E. Campbell D. B. Mefford H. C. Morrow E. M. Weiss L. A. ( 2013 ). SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism 4 : 36 . 10.1186/2040-2392-4-36 24090431 

  2. Albright A. V. Gonzalez-Scarano F. ( 2004 ). Microarray analysis of activated mixed glial (microglia) and monocyte-derived macrophage gene expression. J. Neuroimmunol. 157 27 – 38 . 10.1016/j.jneuroim.2004.09.007 15579277 

  3. Bai Y. Qiu S. Li Y. Li Y. Zhong W. Shi M. ( 2018 ). Genetic association between SHANK2 polymorphisms and susceptibility to autism spectrum disorder. IUBMB Life 70 763 – 776 . 10.1002/iub.1876 29934968 

  4. Barnard R. A. Pomaville M. B. O’Roak B. J. ( 2015 ). Mutations and modeling of the chromatin remodeler CHD8 define an emerging autism etiology. Front. Neurosci. 9 : 477 . 10.3389/fnins.2015.00477 26733790 

  5. Beconi M. G. Howland D. Park L. Lyons K. Giuliano J. Dominguez C. ( 2011 ). Pharmacokinetics of memantine in rats and mice. PLoS Curr. 3 : RRN1291 . 10.1371/currents.RRN1291 22307216 

  6. Berkel S. Marshall C. R. Weiss B. Howe J. Roeth R. Moog U. ( 2010 ). Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat. Genet. 42 489 – 491 . 10.1038/ng.589 20473310 

  7. Berkel S. Tang W. Trevino M. Vogt M. Obenhaus H. A. Gass P. ( 2011 ). Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology. Hum. Mol. Genet. 21 344 – 357 . 10.1093/hmg/ddr470 21994763 

  8. Bidinosti M. Botta P. Kruttner S. Proenca C. C. Stoehr N. Bernhard M. ( 2016 ). CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science 351 1199 – 1203 . 10.1126/science.aad5487 26847545 

  9. Boeckers T. M. Bockmann J. Kreutz M. R. Gundelfinger E. D. ( 2002 ). ProSAP/shank proteins – a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J. Neurochem. 81 903 – 910 . 12065602 

  10. Boeckers T. M. Kreutz M. R. Winter C. Zuschratter W. Smalla K. H. Sanmarti-Vila L. ( 1999 ). Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density. J. Neurosci. 19 6506 – 6518 . 10414979 

  11. Borrie S. C. Brems H. Legius E. Bagni C. ( 2017 ). Cognitive dysfunctions in intellectual disabilities: the contributions of the Ras-MAPK and PI3K-AKT-mTOR pathways. Annu. Rev. Genomics Hum. Genet. 18 115 – 142 . 28859574 

  12. Cahoy J. D. Emery B. Kaushal A. Foo L. C. Zamanian J. L. Christopherson K. S. ( 2008 ). A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28 264 – 278 . 10.1523/JNEUROSCI.4178-07.2008 18171944 

  13. Chen E. Y. Tan C. M. Kou Y. Duan Q. Wang Z. Meirelles G. V. ( 2013 ). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14 : 128 . 10.1186/1471-2105-14-128 23586463 

  14. Chilian B. Abdollahpour H. Bierhals T. Haltrich I. Fekete G. Nagel I. ( 2013 ). Dysfunction of SHANK2 and CHRNA7 in a patient with intellectual disability and language impairment supports genetic epistasis of the two loci. Clin. Genet. 84 560 – 565 . 10.1111/cge.12105 23350639 

  15. Ching T. Huang S. Garmire L. X. ( 2014 ). Power analysis and sample size estimation for RNA-Seq differential expression. RNA 20 1684 – 1696 . 10.1261/rna.046011.114 25246651 

  16. Chung C. Ha S. Kang H. Lee J. Um S. M. Yan H. ( 2019 ). Early correction of N-methyl-D-aspartate receptor function improves autistic-like social behaviors in adult shank2(-/-) mice. Biol. Psychiatry 85 534 – 543 . 10.1016/j.biopsych.2018.09.025 30466882 

  17. Condomitti G. de Wit J. ( 2018 ). Heparan sulfate proteoglycans as emerging players in synaptic specificity. Front. Mol. Neurosci. 11 : 14 . 

  18. Costa-Mattioli M. Monteggia L. M. ( 2013 ). mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat. Neurosci. 16 1537 – 1543 . 10.1038/nn.3546 24165680 

  19. Costas J. ( 2015 ). The role of SHANK2 rare variants in schizophrenia susceptibility. Mol. Psychiatry 20 : 1486 . 10.1038/mp.2015.119 26303661 

  20. Darnell J. C. Van Driesche S. J. Zhang C. Hung K. Y. Mele A. Fraser C. E. ( 2011 ). FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146 247 – 261 . 10.1016/j.cell.2011.06.013 21784246 

  21. De Rubeis S. He X. Goldberg A. P. Poultney C. S. Samocha K. Cicek A. E. ( 2014 ). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515 209 – 215 . 10.1038/nature13772 25363760 

  22. Dembitskaya Y. Gavrilov N. Kraev I. Doronin M. Tang Y. Li L. ( 2021 ). Attenuation of the extracellular matrix increases the number of synapses but suppresses synaptic plasticity through upregulation of SK channels. Cell Calcium 96 : 102406 . 10.1016/j.ceca.2021.102406 33848733 

  23. Diez-Guerra F. J. ( 2010 ). Neurogranin, a link between calcium/calmodulin and protein kinase C signaling in synaptic plasticity. IUBMB Life 62 597 – 606 . 10.1002/iub.357 20665622 

  24. Du Y. Weed S. A. Xiong W. C. Marshall T. D. Parsons J. T. ( 1998 ). Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Mol. Cell. Biol. 18 5838 – 5851 . 9742101 

  25. Fawcett J. W. Oohashi T. Pizzorusso T. ( 2019 ). The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat. Rev. Neurosci. 20 451 – 465 . 10.1038/s41583-019-0196-3 31263252 

  26. Folch J. Busquets O. Ettcheto M. Sanchez-Lopez E. Castro-Torres R. D. Verdaguer E. ( 2018 ). Memantine for the treatment of dementia: a review on its current and future applications. J. Alzheimers Dis. 62 1223 – 1240 . 10.3233/JAD-170672 29254093 

  27. Frischknecht R. Chang K. J. Rasband M. N. Seidenbecher C. I. ( 2014 ). Neural ECM molecules in axonal and synaptic homeostatic plasticity. Prog. Brain Res. 214 81 – 100 . 10.1016/B978-0-444-63486-3.00004-9 25410354 

  28. Frye R. E. ( 2020 ). Mitochondrial dysfunction in autism spectrum disorder: unique abnormalities and targeted treatments. Semin. Pediatr. Neurol. 35 : 100829 . 10.1016/j.spen.2020.100829 32892956 

  29. Garbett K. Ebert P. J. Mitchell A. Lintas C. Manzi B. Mirnics K. ( 2008 ). Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol. Dis. 30 303 – 311 . 10.1016/j.nbd.2008.01.012 18378158 

  30. Goodman J. V. Bonni A. ( 2019 ). Regulation of neuronal connectivity in the mammalian brain by chromatin remodeling. Curr. Opin. Neurobiol. 59 59 – 68 . 10.1016/j.conb.2019.04.010 31146125 

  31. Grabrucker A. M. Schmeisser M. J. Schoen M. Boeckers T. M. ( 2011 ). Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol. 21 594 – 603 . 10.1016/j.tcb.2011.07.003 21840719 

  32. Grabrucker S. Pagano J. Schweizer J. Urrutia-Ruiz C. Schon M. Thome K. ( 2021 ). Activation of the medial preoptic area (MPOA) ameliorates loss of maternal behavior in a Shank2 mouse model for autism. EMBO J. 40 : e104267 . 10.15252/embj.2019104267 33491217 

  33. Guilmatre A. Huguet G. Delorme R. Bourgeron T. ( 2014 ). The emerging role of SHANK genes in neuropsychiatric disorders. Dev. Neurobiol. 74 113 – 122 . 10.1002/dneu.22128 24124131 

  34. Gupta S. Ellis S. E. Ashar F. N. Moes A. Bader J. S. Zhan J. ( 2014 ). Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat. Commun. 5 : 5748 . 10.1038/ncomms6748 25494366 

  35. Hoeffer C. A. Klann E. ( 2010 ). mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 33 67 – 75 . 10.1016/j.tins.2009.11.003 19963289 

  36. Hollis F. Kanellopoulos A. K. Bagni C. ( 2017 ). Mitochondrial dysfunction in autism spectrum disorder: clinical features and perspectives. Curr. Opin. Neurobiol. 45 178 – 187 . 10.1016/j.conb.2017.05.018 28628841 

  37. Homann O. R. Misura K. Lamas E. Sandrock R. W. Nelson P. McDonough S. I. ( 2016 ). Whole-genome sequencing in multiplex families with psychoses reveals mutations in the SHANK2 and SMARCA1 genes segregating with illness. Mol. Psychiatry 21 1690 – 1695 . 10.1038/mp.2016.24 27001614 

  38. Huang da W. Sherman B. T. Lempicki R. A. ( 2009 ). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4 44 – 57 . 10.1038/nprot.2008.211 19131956 

  39. Iossifov I. O’Roak B. J. Sanders S. J. Ronemus M. Krumm N. Levy D. ( 2014 ). The contribution of de novo coding mutations to autism spectrum disorder. Nature 515 216 – 221 . 10.1038/nature13908 25363768 

  40. Isserlin R. Merico D. Voisin V. Bader G. D. ( 2014 ). Enrichment map – a cytoscape app to visualize and explore OMICs pathway enrichment results. F1000Res. 3 : 141 . 10.12688/f1000research.4536.1 25075306 

  41. Kang H. J. Kawasawa Y. I. Cheng F. Zhu Y. Xu X. Li M. ( 2011 ). Spatio-temporal transcriptome of the human brain. Nature 478 483 – 489 . 10.1038/nature10523 22031440 

  42. Kim E. Sheng M. ( 2004 ). PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5 771 – 781 . 10.1038/nrn1517 15378037 

  43. Koopmans F. van Nierop P. Andres-Alonso M. Byrnes A. Cijsouw T. Coba M. P. ( 2019 ). SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103 217 – 234.e4 . 10.1016/j.neuron.2019.05.002 31171447 

  44. Kuleshov M. V. Jones M. R. Rouillard A. D. Fernandez N. F. Duan Q. Wang Z. ( 2016 ). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44 W90 – W97 . 10.1093/nar/gkw377 27141961 

  45. Leblond C. S. Heinrich J. Delorme R. Proepper C. Betancur C. Huguet G. ( 2012 ). Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet. 8 : e1002521 . 10.1371/journal.pgen.1002521 22346768 

  46. Leblond C. S. Nava C. Polge A. Gauthier J. Huguet G. Lumbroso S. ( 2014 ). Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. 10 : e1004580 . 10.1371/journal.pgen.1004580 25188300 

  47. Lee A. Hirabayashi Y. Kwon S. K. Lewis T. L. Jr. Polleux F. ( 2018 ). Emerging roles of mitochondria in synaptic transmission and neurodegeneration. Curr. Opin. Physiol. 3 82 – 93 . 10.1016/j.cophys.2018.03.009 30320242 

  48. Lee E. J. Lee H. Huang T. N. Chung C. Shin W. Kim K. ( 2015 ). Trans-synaptic zinc mobilization improves social interaction in two mouse models of autism through NMDAR activation. Nat. Commun. 6 : 7168 . 10.1038/ncomms8168 25981743 

  49. Lee Y. Kim S. G. Lee B. Zhang Y. Kim Y. Kim S. ( 2017 ). Striatal transcriptome and interactome analysis of shank3-overexpressing mice reveals the connectivity between shank3 and mTORC1 signaling. Front. Mol. Neurosci. 10 : 201 . 10.3389/fnmol.2017.00201 28701918 

  50. Li Z. Okamoto K. Hayashi Y. Sheng M. ( 2004 ). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119 873 – 887 . 10.1016/j.cell.2004.11.003 15607982 

  51. Lim S. Naisbitt S. Yoon J. Hwang J. I. Suh P. G. Sheng M. ( 1999 ). Characterization of the shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J. Biol. Chem. 274 29510 – 29518 . 10506216 

  52. Lipton S. A. ( 2006 ). Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat. Rev. Drug Discov. 5 160 – 170 . 10.1038/nrd1958 16424917 

  53. Lista S. Hampel H. ( 2017 ). Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease. Expert Rev. Neurother. 17 47 – 57 . 10.1080/14737175.2016.1204234 27332958 

  54. Liu Y. Du Y. Liu W. Yang C. Liu Y. Wang H. ( 2013 ). Lack of association between NLGN3, NLGN4, SHANK2 and SHANK3 gene variants and autism spectrum disorder in a Chinese population. PLoS One 8 : e56639 . 10.1371/journal.pone.0056639 23468870 

  55. Love M. I. Huber W. Anders S. ( 2014 ). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 : 550 . 10.1186/s13059-014-0550-8 25516281 

  56. Lu Z. A. Mu W. Osborne L. M. Cordner Z. A. ( 2018 ). Eighteen-year-old man with autism, obsessive compulsive disorder and a SHANK2 variant presents with severe anorexia that responds to high-dose fluoxetine. BMJ Case Rep. 2018 : bcr2018225119 . 10.1136/bcr-2018-225119 29991577 

  57. Ma K. Qin L. Matas E. Duffney L. J. Liu A. Yan Z. ( 2018 ). Histone deacetylase inhibitor MS-275 restores social and synaptic function in a Shank3-deficient mouse model of autism. Neuropsychopharmacology 43 1779 – 1788 . 10.1038/s41386-018-0073-1 29760409 

  58. Matsunaga S. Kishi T. Iwata N. ( 2015 ). Memantine monotherapy for Alzheimer’s disease: a systematic review and meta-analysis. PLoS One 10 : e0123289 . 10.1371/journal.pone.0123289 25860130 

  59. Merico D. Isserlin R. Stueker O. Emili A. Bader G. D. ( 2010 ). Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5 : e13984 . 10.1371/journal.pone.0013984 21085593 

  60. Moffat J. J. Smith A. L. Jung E. M. Ka M. Kim W. Y. ( 2021 ). Neurobiology of ARID1B haploinsufficiency related to neurodevelopmental and psychiatric disorders. Mol. Psychiatry 10.1038/s41380-021-01060-x [Online ahead of print]. 33686214 

  61. Mootha V. K. Lindgren C. M. Eriksson K. F. Subramanian A. Sihag S. Lehar J. ( 2003 ). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34 267 – 273 . 10.1038/ng1180 12808457 

  62. Morita M. Gravel S. P. Hulea L. Larsson O. Pollak M. St-Pierre J. ( 2015 ). mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle 14 473 – 480 . 10.4161/15384101.2014.991572 25590164 

  63. Mossa A. Giona F. Pagano J. Sala C. Verpelli C. ( 2017 ). SHANK genes in autism: defining therapeutic targets. Prog. Neuropsychopharmacol. Biol. Psychiatry 84(Pt B) 416 – 423 . 10.1016/j.pnpbp.2017.11.019 29175319 

  64. Naisbitt S. Kim E. Tu J. C. Xiao B. Sala C. Valtschanoff J. ( 1999 ). Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23 569 – 582 . 10433268 

  65. Parikshak N. N. Luo R. Zhang A. Won H. Lowe J. K. Chandran V. ( 2013 ). Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155 1008 – 1021 . 24267887 

  66. Parikshak N. N. Swarup V. Belgard T. G. Irimia M. Ramaswami G. Gandal M. J. ( 2016 ). Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 540 423 – 427 . 10.1038/nature20612 27919067 

  67. Patro R. Duggal G. Love M. I. Irizarry R. A. Kingsford C. ( 2017 ). Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14 417 – 419 . 10.1038/nmeth.4197 28263959 

  68. Peykov S. Berkel S. Degenhardt F. Rietschel M. Nothen M. M. Rappold G. A. ( 2015a ). Rare SHANK2 variants in schizophrenia. Mol. Psychiatry 20 1487 – 1488 . 10.1038/mp.2015.122 26303658 

  69. Peykov S. Berkel S. Schoen M. Weiss K. Degenhardt F. Strohmaier J. ( 2015b ). Identification and functional characterization of rare SHANK2 variants in schizophrenia. Mol. Psychiatry 20 1489 – 1498 . 10.1038/mp.2014.172 25560758 

  70. Pinero J. Ramirez-Anguita J. M. Sauch-Pitarch J. Ronzano F. Centeno E. Sanz F. ( 2020 ). The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48 D845 – D855 . 10.1093/nar/gkz1021 31680165 

  71. Pinto D. Pagnamenta A. T. Klei L. Anney R. Merico D. Regan R. ( 2010 ). Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466 368 – 372 . 10.1038/nature09146 20531469 

  72. Qin L. Ma K. Wang Z. J. Hu Z. Matas E. Wei J. ( 2018 ). Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat. Neurosci. 21 564 – 575 . 10.1038/s41593-018-0110-8 29531362 

  73. Rauch A. Wieczorek D. Graf E. Wieland T. Endele S. Schwarzmayr T. ( 2012 ). Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380 1674 – 1682 . 10.1016/S0140-6736(12)61480-9 23020937 

  74. Rojas-Charry L. Nardi L. Methner A. Schmeisser M. J. ( 2021 ). Abnormalities of synaptic mitochondria in autism spectrum disorder and related neurodevelopmental disorders. J. Mol. Med. 99 161 – 178 . 10.1007/s00109-020-02018-2 33340060 

  75. Ronan J. L. Wu W. Crabtree G. R. ( 2013 ). From neural development to cognition: unexpected roles for chromatin. Nat. Rev. Genet. 14 347 – 359 . 10.1038/nrg3413 23568486 

  76. Sala C. Vicidomini C. Bigi I. Mossa A. Verpelli C. ( 2015 ). Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders. J. Neurochem. 135 849 – 858 . 10.1111/jnc.13232 26338675 

  77. Sanders S. J. Murtha M. T. Gupta A. R. Murdoch J. D. Raubeson M. J. Willsey A. J. ( 2012 ). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485 237 – 241 . 10.1038/nature10945 22495306 

  78. Santini E. Klann E. ( 2014 ). Reciprocal signaling between translational control pathways and synaptic proteins in autism spectrum disorders. Sci. Signal. 7 : re10 . 10.1126/scisignal.2005832 25351249 

  79. Satterstrom F. K. Kosmicki J. A. Wang J. Breen M. S. De Rubeis S. An J. Y. ( 2020 ). Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180 568 – 584.e23 . 10.1016/j.cell.2019.12.036 31981491 

  80. Schmeisser M. J. Ey E. Wegener S. Bockmann J. Stempel V. Kuebler A. ( 2012 ). Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486 256 – 260 . 22699619 

  81. Sheng M. Kim E. ( 2000 ). The Shank family of scaffold proteins. J. Cell Sci. 113(Pt 11) 1851 – 1856 . 10806096 

  82. Sheng M. Kim E. ( 2011 ). The postsynaptic organization of synapses. Cold Spring Harb. Perspect. Biol. 3 : a005678 . 10.1101/cshperspect.a005678 22046028 

  83. Sheng Z. H. Cai Q. ( 2012 ). Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat. Rev. Neurosci. 13 77 – 93 . 10.1038/nrn3156 22218207 

  84. Soneson C. Love M. I. Robinson M. D. ( 2015 ). Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4 : 1521 . 10.12688/f1000research.7563.2 26925227 

  85. Song I. Dityatev A. ( 2018 ). Crosstalk between glia, extracellular matrix and neurons. Brain Res. Bull. 136 101 – 108 . 10.1016/j.brainresbull.2017.03.003 28284900 

  86. Subramanian A. Tamayo P. Mootha V. K. Mukherjee S. Ebert B. L. Gillette M. A. ( 2005 ). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102 15545 – 15550 . 10.1073/pnas.0506580102 16199517 

  87. Switon K. Kotulska K. Janusz-Kaminska A. Zmorzynska J. Jaworski J. ( 2017 ). Molecular neurobiology of mTOR. Neuroscience 341 112 – 153 . 10.1016/j.neuroscience.2016.11.017 27889578 

  88. Velmeshev D. Magistri M. Mazza E. M. C. Lally P. Khoury N. D’Elia E. R. ( 2020 ). Cell-type-specific analysis of molecular pathology in autism identifies common genes and pathways affected across neocortical regions. Mol. Neurobiol. 57 2279 – 2289 . 10.1007/s12035-020-01879-5 32008165 

  89. Velmeshev D. Schirmer L. Jung D. Haeussler M. Perez Y. Mayer S. ( 2019 ). Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364 685 – 689 . 10.1126/science.aav8130 31097668 

  90. Verpelli C. Pagano J. Sala C. ( 2019 ). The up and down of the N-methyl-D-aspartate receptor that causes autism. Biol. Psychiatry 85 530 – 531 . 10.1016/j.biopsych.2019.01.020 30871688 

  91. Voineagu I. Wang X. Johnston P. Lowe J. K. Tian Y. Horvath S. ( 2011 ). Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474 380 – 384 . 10.1038/nature10110 21614001 

  92. Vos M. Lauwers E. Verstreken P. ( 2010 ). Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Front. Synaptic Neurosci. 2 : 139 . 10.3389/fnsyn.2010.00139 21423525 

  93. Wang T. Hoekzema K. Vecchio D. Wu H. Sulovari A. Coe B. P. ( 2020 ). Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nat. Commun. 11 : 4932 . 10.1038/s41467-020-18723-y 33004838 

  94. Wang Z. J. Zhong P. Ma K. Seo J. S. Yang F. Hu Z. ( 2019 ). Amelioration of autism-like social deficits by targeting histone methyltransferases EHMT1/2 in Shank3-deficient mice. Mol. Psychiatry 25 2517 – 2533 . 10.1038/s41380-019-0351-2 30659288 

  95. Werling D. M. Parikshak N. N. Geschwind D. H. ( 2016 ). Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders. Nat. Commun. 7 : 10717 . 10.1038/ncomms10717 26892004 

  96. Winden K. D. Ebrahimi-Fakhari D. Sahin M. ( 2018 ). Abnormal mTOR activation in autism. Annu. Rev. Neurosci. 41 1 – 23 . 10.1146/annurev-neuro-080317-061747 29490194 

  97. Won H. Lee H. R. Gee H. Y. Mah W. Kim J. I. Lee J. ( 2012 ). Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486 261 – 265 . 10.1038/nature11208 22699620 

  98. Xu L. M. Li J. R. Huang Y. Zhao M. Tang X. Wei L. ( 2012 ). AutismKB: an evidence-based knowledgebase of autism genetics. Nucleic Acids Res. 40 D1016 – D1022 . 10.1093/nar/gkr1145 22139918 

  99. Yang C. Li J. Wu Q. Yang X. Huang A. Y. Zhang J. ( 2018 ). AutismKB 2.0: a knowledgebase for the genetic evidence of autism spectrum disorder. Database 2018 : bay106 . 10.1093/database/bay106 30339214 

  100. Yuen R. K. C. Merico D. Bookman M. Howe J. L. Thiruvahindrapuram B. Patel R. V. ( 2017 ). Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 20 602 – 611 . 10.1038/nn.4524 28263302 

  101. Zaslavsky K. Zhang W. B. McCready F. P. Rodrigues D. C. Deneault E. Loo C. ( 2019 ). SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons. Nat. Neurosci. 22 556 – 564 . 10.1038/s41593-019-0365-8 30911184 

  102. Zeisel A. Munoz-Manchado A. B. Codeluppi S. Lonnerberg P. La Manno G. Jureus A. ( 2015 ). Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347 1138 – 1142 . 10.1126/science.aaa1934 25700174 

  103. Zhang F. Rein B. Zhong P. Shwani T. Conrow-Graham M. Wang Z. J. ( 2021 ). Synergistic inhibition of histone modifiers produces therapeutic effects in adult Shank3-deficient mice. Transl. Psychiatry 11 : 99 . 10.1038/s41398-021-01233-w 33542189 

  104. Zhu L. Wang X. Li X. L. Towers A. Cao X. Wang P. ( 2014 ). Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum. Mol. Genet. 23 1563 – 1578 . 10.1093/hmg/ddt547 24186872 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로